Study on Fast Human Activity Recognition Based on Optimized Feature Selection

被引:6
|
作者
Xu, Hanyuan [1 ]
Huang, Zhibin [1 ]
Wang, Jue [1 ]
Kang, Zilu [2 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Comp Sci, Beijing, Peoples R China
[2] China Elect Technol Grp Corp, Informat Engn Res Ctr, Inst Internet Things Technol, Beijing, Peoples R China
来源
2017 16TH INTERNATIONAL SYMPOSIUM ON DISTRIBUTED COMPUTING AND APPLICATIONS TO BUSINESS, ENGINEERING AND SCIENCE (DCABES) | 2017年
关键词
Human Activity Recognition; Pearson Correlation Coefficient; Support Vector Machine; Deep Learning Framework Caffe;
D O I
10.1109/DCABES.2017.31
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Sensor-based human activity recognition has attracted much scholarly attention due to its merit of wide applicability. However, because of such hardware limitations as battery capacity and computing power, most current generation of wearable devices cannot yet benefit from those activity recognition methods based on deep learning theory and high dimension features since implementing these methods are time-consuming and need a relatively large amount of calculation. A solution, therefore, is proposed for this situation, which aims to reduce computational complexity by reducing the feature dimension through analyzing the linear correlation between the features. Based on the support vector machine model of single-layer fully connected network, the training and recognition time are significantly reduced while the recognition accuracy is still ensured. The experiment is based on the public dataset in the UCI Machine Learning Repository, and it uses Caffe, a deep learning framework, to structure the support vector machine model. In the experiment, when the feature dimension is reduced from 561 to 130, the training time can be reduced by 70% while the recognition accuracy is kept at a promising 91%.
引用
收藏
页码:109 / 112
页数:4
相关论文
共 50 条
  • [11] An Integration of feature extraction and Guided Regularized Random Forest feature selection for Smartphone based Human Activity Recognition
    Thakur, Dipanwita
    Biswas, Suparna
    JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2022, 204
  • [12] Human Activity Recognition using Optical Flow based Feature Set
    Kumar, S. Santhosh
    John, Mala
    2016 IEEE INTERNATIONAL CARNAHAN CONFERENCE ON SECURITY TECHNOLOGY (ICCST), 2016, : 138 - 142
  • [13] A Novel Feature-Selection Method for Human Activity Recognition in Videos
    Tweit, Nadia
    Obaidat, Muath A.
    Rawashdeh, Majdi
    Bsoul, Abdalraoof K.
    Al Zamil, Mohammed GH.
    ELECTRONICS, 2022, 11 (05)
  • [14] Comparison of Wrapper and Filter Feature Selection Algorithms on Human Activity Recognition
    Suto, Jozsef
    Oniga, Stefan
    Sitar, Petrica Pop
    2016 6TH INTERNATIONAL CONFERENCE ON COMPUTERS COMMUNICATIONS AND CONTROL (ICCCC), 2016, : 124 - 129
  • [15] A Comparative Study of Feature Selection Approaches for Human Activity Recognition Using Multimodal Sensory Data
    Amjad, Fatima
    Khan, Muhammad Hassan
    Nisar, Muhammad Adeel
    Farid, Muhammad Shahid
    Grzegorzek, Marcin
    SENSORS, 2021, 21 (07)
  • [16] Human Behavior Recognition Model Based on Feature and Classifier Selection
    Gao, Ge
    Li, Zhixin
    Huan, Zhan
    Chen, Ying
    Liang, Jiuzhen
    Zhou, Bangwen
    Dong, Chenhui
    SENSORS, 2021, 21 (23)
  • [17] Comparative study for feature detectors in human activity recognition
    Bebars, Amira Ali
    Hemayed, Elsayed E.
    2013 9TH INTERNATIONAL COMPUTER ENGINEERING CONFERENCE (ICENCO 2013): TODAY INFORMATION SOCIETY WHAT'S NEXT?, 2014, : 19 - 24
  • [18] A Novel Sensor-Based Human Activity Recognition Method Based on Hybrid Feature Selection and Combinational Optimization
    Tian, Yiming
    Zhang, Jie
    Li, Lipeng
    Liu, Zuojun
    IEEE ACCESS, 2021, 9 : 107235 - 107249
  • [19] Feature Reorganization based Human Activity Recognition in IoT-enabled Applications
    Zhou, Min
    Tao, Ming
    Chen, Pinghua
    2019 IEEE INTL CONF ON PARALLEL & DISTRIBUTED PROCESSING WITH APPLICATIONS, BIG DATA & CLOUD COMPUTING, SUSTAINABLE COMPUTING & COMMUNICATIONS, SOCIAL COMPUTING & NETWORKING (ISPA/BDCLOUD/SOCIALCOM/SUSTAINCOM 2019), 2019, : 108 - 115
  • [20] Smartphone sensors-based human activity recognition using feature selection and deep decision fusion
    Zhang, Yijia
    Yao, Xiaolan
    Fei, Qing
    Chen, Zhen
    IET CYBER-PHYSICAL SYSTEMS: THEORY & APPLICATIONS, 2023, 8 (02) : 76 - 90