A multi-task, multi-stage deep transfer learning model for early prediction of neurodevelopment in very preterm infants

被引:42
作者
He, Lili [1 ,2 ,3 ,6 ]
Li, Hailong [1 ,2 ,6 ]
Wang, Jinghua [4 ]
Chen, Ming [1 ,2 ,5 ,6 ]
Gozdas, Elveda [6 ]
Dillman, Jonathan R. [4 ,6 ,7 ]
Parikh, Nehal A. [1 ,2 ,3 ]
机构
[1] Cincinnati Childrens Hosp Med Ctr, Perinatal Inst, 3333 Burnet Ave,MLC 7009, Cincinnati, OH 45229 USA
[2] Cincinnati Childrens Hosp Med Ctr, Sect Neonatol Perinatal & Pulm Biol, 3333 Burnet Ave,MLC 7009, Cincinnati, OH 45229 USA
[3] Univ Cincinnati, Coll Med, Dept Pediat, Cincinnati, OH USA
[4] Univ Cincinnati, Coll Med, Dept Radiol, Cincinnati, OH USA
[5] Univ Cincinnati, Dept Elect Engn & Comp Syst, Cincinnati, OH USA
[6] Cincinnati Childrens Hosp Med Ctr, Imaging Res Ctr, 3333 Burnet Ave,MLC 7009, Cincinnati, OH 45229 USA
[7] Cincinnati Childrens Hosp Med Ctr, Dept Radiol, 3333 Burnet Ave,MLC 7009, Cincinnati, OH 45229 USA
基金
美国国家卫生研究院;
关键词
NEURAL-NETWORK CLASSIFICATION; FUNCTIONAL CONNECTIVITY; EXTREME PREMATURITY; OUTCOMES; IDENTIFICATION; ULTRASOUND;
D O I
10.1038/s41598-020-71914-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Survivors following very premature birth (i.e., <= 32 weeks gestational age) remain at high risk for neurodevelopmental impairments. Recent advances in deep learning techniques have made it possible to aid the early diagnosis and prognosis of neurodevelopmental deficits. Deep learning models typically require training on large datasets, and unfortunately, large neuroimaging datasets with clinical outcome annotations are typically limited, especially in neonates. Transfer learning represents an important step to solve the fundamental problem of insufficient training data in deep learning. In this work, we developed a multi-task, multi-stage deep transfer learning framework using the fusion of brain connectome and clinical data for early joint prediction of multiple abnormal neurodevelopmental (cognitive, language and motor) outcomes at 2 years corrected age in very preterm infants. The proposed framework maximizes the value of both available annotated and non-annotated data in model training by performing both supervised and unsupervised learning. We first pre-trained a deep neural network prototype in a supervised fashion using 884 older children and adult subjects, and then re-trained this prototype using 291 neonatal subjects without supervision. Finally, we fine-tuned and validated the pre-trained model using 33 preterm infants. Our proposed model identified very preterm infants at high-risk for cognitive, language, and motor deficits at 2 years corrected age with an area under the receiver operating characteristic curve of 0.86, 0.66 and 0.84, respectively. Employing such a deep learning model, once externally validated, may facilitate risk stratification at term-equivalent age for early identification of long-term neurodevelopmental deficits and targeted early interventions to improve clinical outcomes in very preterm infants.
引用
收藏
页数:13
相关论文
共 67 条
[21]   Cerebral palsy after very preterm birth - an imaging perspective [J].
Gano, Dawn ;
Cowan, Frances M. ;
de Vries, Linda S. .
SEMINARS IN FETAL & NEONATAL MEDICINE, 2020, 25 (03)
[22]   Diagnostic accuracy of early magnetic resonance imaging to determine motor outcomes in infants born preterm: a systematic review and meta-analysis [J].
George, Joanne M. ;
Pannek, Kerstin ;
Rose, Stephen E. ;
Ware, Robert S. ;
Colditz, Paul B. ;
Boyd, Roslyn N. .
DEVELOPMENTAL MEDICINE AND CHILD NEUROLOGY, 2018, 60 (02) :134-146
[23]   White matter connectomes at birth accurately predict cognitive abilities at age 2 [J].
Girault, Jessica B. ;
Munsell, Brent C. ;
Puechmaille, Danaele ;
Goldman, Barbara D. ;
Prieto, Juan C. ;
Styner, Martin ;
Gilmore, John H. .
NEUROIMAGE, 2019, 192 :145-155
[24]   The Human Connectome Project's neuroimaging approach [J].
Glasser, Matthew F. ;
Smith, Stephen M. ;
Marcus, Daniel S. ;
Andersson, Jesper L. R. ;
Auerbach, Edward J. ;
Behrens, Timothy E. J. ;
Coalson, Timothy S. ;
Harms, Michael P. ;
Jenkinson, Mark ;
Moeller, Steen ;
Robinson, Emma C. ;
Sotiropoulos, Stamatios N. ;
Xu, Junqian ;
Yacoub, Essa ;
Ugurbil, Kamil ;
Van Essen, David C. .
NATURE NEUROSCIENCE, 2016, 19 (09) :1175-1187
[25]  
Hamilton B.E., 2015, National Vital Statistics Reports: From the Centers for Disease Control and Prevention, National Center for Health and Statistics, National Vital Statistics System, V64, P1
[26]   Early prediction of cognitive deficits in very preterm infants using functional connectome data in an artificial neural network framework [J].
He, Lili ;
Li, Hailong ;
Holland, Scott K. ;
Yuan, Weihong ;
Altaye, Mekibib ;
Parikh, Nehal A. .
NEUROIMAGE-CLINICAL, 2018, 18 :290-297
[27]   Brain functional network connectivity development in very preterm infants: The first six months [J].
He, Lili ;
Parikh, Nehal A. .
EARLY HUMAN DEVELOPMENT, 2016, 98 :29-35
[28]   Aberrant Executive and Frontoparietal Functional Connectivity in Very Preterm Infants With Diffuse White Matter Abnormalities [J].
He, Lili ;
Parikh, Nehal A. .
PEDIATRIC NEUROLOGY, 2015, 53 (04) :330-337
[29]   Identification of autism spectrum disorder using deep learning and the ABIDE dataset [J].
Heinsfeld, Anibal Solon ;
Franco, Alexandre Rosa ;
Cameron Craddock, R. ;
Buchweitz, Augusto ;
Meneguzzi, Felipe .
NEUROIMAGE-CLINICAL, 2018, 17 :16-23
[30]   Restricted Boltzmann machines for neuroimaging: An application in identifying intrinsic networks [J].
Hjelm, R. Devon ;
Calhoun, Vince D. ;
Salakhutdinov, Ruslan ;
Allen, Elena A. ;
Adali, Tulay ;
Plis, Sergey M. .
NEUROIMAGE, 2014, 96 :245-260