A multi-task, multi-stage deep transfer learning model for early prediction of neurodevelopment in very preterm infants

被引:40
作者
He, Lili [1 ,2 ,3 ,6 ]
Li, Hailong [1 ,2 ,6 ]
Wang, Jinghua [4 ]
Chen, Ming [1 ,2 ,5 ,6 ]
Gozdas, Elveda [6 ]
Dillman, Jonathan R. [4 ,6 ,7 ]
Parikh, Nehal A. [1 ,2 ,3 ]
机构
[1] Cincinnati Childrens Hosp Med Ctr, Perinatal Inst, 3333 Burnet Ave,MLC 7009, Cincinnati, OH 45229 USA
[2] Cincinnati Childrens Hosp Med Ctr, Sect Neonatol Perinatal & Pulm Biol, 3333 Burnet Ave,MLC 7009, Cincinnati, OH 45229 USA
[3] Univ Cincinnati, Coll Med, Dept Pediat, Cincinnati, OH USA
[4] Univ Cincinnati, Coll Med, Dept Radiol, Cincinnati, OH USA
[5] Univ Cincinnati, Dept Elect Engn & Comp Syst, Cincinnati, OH USA
[6] Cincinnati Childrens Hosp Med Ctr, Imaging Res Ctr, 3333 Burnet Ave,MLC 7009, Cincinnati, OH 45229 USA
[7] Cincinnati Childrens Hosp Med Ctr, Dept Radiol, 3333 Burnet Ave,MLC 7009, Cincinnati, OH 45229 USA
基金
美国国家卫生研究院;
关键词
NEURAL-NETWORK CLASSIFICATION; FUNCTIONAL CONNECTIVITY; EXTREME PREMATURITY; OUTCOMES; IDENTIFICATION; ULTRASOUND;
D O I
10.1038/s41598-020-71914-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Survivors following very premature birth (i.e., <= 32 weeks gestational age) remain at high risk for neurodevelopmental impairments. Recent advances in deep learning techniques have made it possible to aid the early diagnosis and prognosis of neurodevelopmental deficits. Deep learning models typically require training on large datasets, and unfortunately, large neuroimaging datasets with clinical outcome annotations are typically limited, especially in neonates. Transfer learning represents an important step to solve the fundamental problem of insufficient training data in deep learning. In this work, we developed a multi-task, multi-stage deep transfer learning framework using the fusion of brain connectome and clinical data for early joint prediction of multiple abnormal neurodevelopmental (cognitive, language and motor) outcomes at 2 years corrected age in very preterm infants. The proposed framework maximizes the value of both available annotated and non-annotated data in model training by performing both supervised and unsupervised learning. We first pre-trained a deep neural network prototype in a supervised fashion using 884 older children and adult subjects, and then re-trained this prototype using 291 neonatal subjects without supervision. Finally, we fine-tuned and validated the pre-trained model using 33 preterm infants. Our proposed model identified very preterm infants at high-risk for cognitive, language, and motor deficits at 2 years corrected age with an area under the receiver operating characteristic curve of 0.86, 0.66 and 0.84, respectively. Employing such a deep learning model, once externally validated, may facilitate risk stratification at term-equivalent age for early identification of long-term neurodevelopmental deficits and targeted early interventions to improve clinical outcomes in very preterm infants.
引用
收藏
页数:13
相关论文
共 67 条
[1]   Deriving reproducible biomarkers from multi-site resting-state data: An Autism-based example [J].
Abraham, Alexandre ;
Milham, Michael P. ;
Di Martino, Adriana ;
Craddock, R. Cameron ;
Samaras, Dimitris ;
Thirion, Bertrand ;
Varoquaux, Gael .
NEUROIMAGE, 2017, 147 :736-745
[2]   Outcome Trajectories in Extremely Preterm Infants [J].
Ambalavanan, Namasivayam ;
Carlo, Waldemar A. ;
Tyson, Jon E. ;
Langer, John C. ;
Walsh, Michele C. ;
Parikh, Nehal A. ;
Das, Abhik ;
Van Meurs, Krisa P. ;
Shankaran, Seetha ;
Stoll, Barbara J. ;
Higgins, Rosemary D. .
PEDIATRICS, 2012, 130 (01) :E115-E125
[3]   Transfer learning from RF to B-mode temporal enhanced ultrasound features for prostate cancer detection [J].
Azizi, Shekoofeh ;
Mousavi, Parvin ;
Yan, Pingkun ;
Tahmasebi, Amir ;
Kwak, Jin Tae ;
Xu, Sheng ;
Turkbey, Baris ;
Choyke, Peter ;
Pinto, Peter ;
Wood, Bradford ;
Abolmaesumi, Purang .
INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2017, 12 (07) :1111-1121
[4]   Thalamocortical Connectivity Predicts Cognition in Children Born Preterm [J].
Ball, Gareth ;
Pazderova, Libuse ;
Chew, Andrew ;
Tusor, Nora ;
Merchant, Nazakat ;
Arichi, Tomoki ;
Allsop, Joanna M. ;
Cowan, Frances M. ;
Edwards, A. David ;
Counsell, Serena J. .
CEREBRAL CORTEX, 2015, 25 (11) :4310-4318
[5]   Resting-State Functional MR Imaging: A New Window to the Brain [J].
Barkhof, Frederik ;
Haller, Sven ;
Rombouts, Serge A. R. B. .
RADIOLOGY, 2014, 272 (01) :28-48
[6]   A component based noise correction method (CompCor) for BOLD and perfusion based fMRI [J].
Behzadi, Yashar ;
Restom, Khaled ;
Liau, Joy ;
Liu, Thomas T. .
NEUROIMAGE, 2007, 37 (01) :90-101
[7]   Multi-scale brain networks [J].
Betzel, Richard F. ;
Bassett, Danielle S. .
NEUROIMAGE, 2017, 160 :73-83
[8]   National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications [J].
Blencowe, Hannah ;
Cousens, Simon ;
Oestergaard, Mikkel Z. ;
Chou, Doris ;
Moller, Ann-Beth ;
Narwal, Rajesh ;
Adler, Alma ;
Garcia, Claudia Vera ;
Rohde, Sarah ;
Say, Lale ;
Lawn, Joy E. .
LANCET, 2012, 379 (9832) :2162-2172
[9]   Preterm outcome table (POT): A simple tool to aid counselling parents of very preterm infants [J].
Bolisetty, S ;
Bajuk, B ;
Me, AL ;
Vincent, T ;
Sutton, L ;
Lui, K .
AUSTRALIAN & NEW ZEALAND JOURNAL OF OBSTETRICS & GYNAECOLOGY, 2006, 46 (03) :189-192
[10]   Clinical data predict neurodevelopmental outcome better than head ultrasound in extremely low birth weight infants [J].
Broitman, Eduardo ;
Ambalavanan, Namasivayam ;
Higgins, Rosemary D. ;
Vohr, Betty R. ;
Das, Abhik ;
Bhaskar, Brinda ;
Murray, Kennan ;
Hintz, Susan R. ;
Carlo, Waldemar A. .
JOURNAL OF PEDIATRICS, 2007, 151 (05) :500-505