Activity inhibition on municipal activated sludge by single-walled carbon nanotubes

被引:18
|
作者
Parise, Alex [1 ,2 ]
Thakor, Harshrajsinh [2 ]
Zhang, Xiaoqi [2 ]
机构
[1] HRP Associates, Auburn, MA 01501 USA
[2] Univ Massachusetts, Dept Civil & Environm Engn, Lowell, MA 01854 USA
基金
美国国家科学基金会;
关键词
Carbon nanotubes; Single-walled carbon nanotubes; Activated sludge; Respiratory activity inhibition; Respiratory inhibition test; EC50; Environmental and health effects; TOXICITY; NANOMATERIALS; CYTOTOXICITY; ACID;
D O I
10.1007/s11051-013-2159-3
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The objective of this study was to evaluate the respiratory activity inhibition of activated sludge used in a typical wastewater treatment plant by single-walled carbon nanotubes (SWCNTs) with different length and functionality. Four types of SWCNTs were evaluated: short, functionalized short, long, and functionalized long. Based on the effective concentration (EC50) values obtained, we determined that functionalized SWCNTs resulted in a higher microbial respiratory inhibition than non-functionalized nanotubes, and long SWCNTs gave a higher microbial respiratory inhibition than their short counterparts. Among the four types of SWCNTs studied, functionalized long exhibited the highest respiration inhibition. Scanning electron microscopy imaging indicates that the long SWCNTs dispersed more favorably after sonication than the short variety. The findings demonstrated that the toxicity of CNTs (exhibited by respiratory inhibition) is related to their physical properties; the length and functionality of SWCNTs affected the toxicity of SWCNTs in a mixed-cultured biologic system.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Excitons in semiconducting single-walled carbon nanotubes
    Zhao, HB
    Mazumdar, S
    SYNTHETIC METALS, 2005, 155 (02) : 250 - 253
  • [42] Piezoresistive effect in single-walled carbon nanotubes
    Lyapkosova, O. S.
    Lebedev, N. G.
    PHYSICS OF THE SOLID STATE, 2012, 54 (07) : 1501 - 1506
  • [43] Magneto spectroscopy of single-walled carbon nanotubes
    Portugall, O.
    Krstic, V.
    Rikken, G. L. J. A.
    Kono, J.
    Shaver, J.
    Zaric, S.
    Moore, V. C.
    Hauge, R. H.
    Smalley, R. E.
    Miyauchi, Y.
    Maruyama, S.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2007, 21 (8-9): : 1189 - 1197
  • [44] Thermal conductivity of single-walled carbon nanotubes
    Savin, Alexander V.
    Hu, Bambi
    Kivshar, Yuri S.
    PHYSICAL REVIEW B, 2009, 80 (19)
  • [45] A simple purification for single-walled carbon nanotubes
    Li, JY
    Zhang, JF
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2005, 28 (03) : 309 - 312
  • [46] Flame synthesis of single-walled carbon nanotubes
    Height, MJ
    Howard, JB
    Tester, JW
    Sande, JBV
    CARBON, 2004, 42 (11) : 2295 - 2307
  • [47] Dextran complexes with single-walled carbon nanotubes
    Stobinski, Leszek
    Polaczek, Elzbieta
    Rebilas, Krzysztof
    Mazurkiewicz, Jozef
    Wrzalik, Roman
    Lin, Hong-Ming
    Tomasik, Piotr
    POLIMERY, 2008, 53 (7-8) : 571 - 575
  • [48] Electron transport in single-walled carbon nanotubes
    McEuen, PL
    Park, JY
    MRS BULLETIN, 2004, 29 (04) : 272 - 275
  • [49] Excitons in Single-Walled Carbon Nanotubes and Their Dynamics
    Amori, Amanda R.
    Hou, Zhentao
    Krauss, Todd D.
    ANNUAL REVIEW OF PHYSICAL CHEMISTRY, VOL 69, 2018, 69 : 81 - 99
  • [50] Reductive Retrofunctionalization of Single-Walled Carbon Nanotubes
    Syrgiannis, Zois
    Gebhardt, Benjamin
    Dotzet, Christoph
    Hauke, Frank
    Graupner, Ralf
    Hirsch, Andreas
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (19) : 3322 - 3325