Periodic and solitary wave solutions for ultrashort pulses in negative-index materials

被引:16
作者
Sharma, Vivek Kumar [1 ]
Goyal, Amit [1 ]
Raju, Thokala Soloman [2 ]
Kumar, C. N. [1 ]
机构
[1] Panjab Univ, Dept Phys, Chandigarh 160014, India
[2] Karunya Univ, Dept Phys, Coimbatore 641114, Tamil Nadu, India
关键词
generalized nonlinear Schrodinger equation; solitary wave solutions; periodic solutions; negative-index materials; METAMATERIALS; SOLITONS;
D O I
10.1080/09500340.2013.815813
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present a detailed analysis for the existence of dark and bright solitary waves as also fractional-transform solutions in a nonlinear Schrodinger equation model for competing cubic-quintic and higher-order nonlinearities with dispersive permittivity and permeability. Parameter domains are delineated in which these ultrashort optical pulses exist in negative-index materials (NIMs). For example, dark solitons exist for the case of normal second-order dispersion, anomalous third-order dispersion, self-focusing Kerr nonlinearity, and non-Kerr nonlinearities, while the bright solitons exist for the case of anomalous second-order dispersion, normal third-order dispersion, self-focusing Kerr nonlinearity, and non-Kerr nonlinearities. This is contrary to the situation in ordinary materials.
引用
收藏
页码:836 / 840
页数:5
相关论文
共 50 条
[41]   Aberration-free two-thin-lens systems based on negative-index materials [J].
Lin Zhi-Li ;
Ding Jie-Chen ;
Zhang Pu .
CHINESE PHYSICS B, 2008, 17 (03) :954-959
[42]   Bloch oscillations in one-dimensional coupled multiple microcavities containing negative-index materials [J].
Wang, Tong-Biao ;
Liu, Nian-Hua ;
Deng, Xin-Hua ;
Liao, Qing-Hua .
JOURNAL OF OPTICS, 2011, 13 (09)
[43]   The solitary wave, rogue wave and periodic solutions for the (3+1)-dimensional soliton equation [J].
Liu, Jian-Guo ;
You, Meng-Xiang ;
Zhou, Li ;
Ai, Guo-Ping .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (01)
[44]   New peakon, solitary wave and periodic wave solutions for the modified Camassa-Holm equation [J].
He, Bin .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (12) :6011-6018
[45]   New exact periodic solitary wave solutions for Kadomtsev-Petviashvili equation [J].
Liu, Changfu .
APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (04) :1350-1354
[46]   Exact periodic, cusp, solitary and loop wave solutions of the EX-ROE [J].
Xie, Shaolong ;
Cai, Jionghui .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2011, 88 (13) :2824-2837
[47]   Periodic and solitary travelling-wave solutions of a CH-DP equation [J].
Xie, Shaolong ;
Lin, Qian ;
Gao, Bin .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (10) :3941-3948
[48]   Exact solitary and periodic-wave solutions of the K(2,2) equation (defocusing branch) [J].
Deng, Xijun ;
Parkes, E. J. ;
Cao, Jinlong .
APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (04) :1566-1576
[49]   Optical Solitons with Beta and M-Truncated Derivatives in Nonlinear Negative-Index Materials with Bohm Potential [J].
Riaz, Muhammad Bilal ;
Awrejcewicz, Jan ;
Jhangeer, Adil .
MATERIALS, 2021, 14 (18)
[50]   Abundant exact and explicit solitary wave and periodic wave solutions to the Sharma-Tasso-Olver equation [J].
Shang, Yadong ;
Qin, Jinghong ;
Huang, Yong ;
Yuan, Wenjun .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 202 (02) :532-538