Periodic and solitary wave solutions for ultrashort pulses in negative-index materials

被引:16
作者
Sharma, Vivek Kumar [1 ]
Goyal, Amit [1 ]
Raju, Thokala Soloman [2 ]
Kumar, C. N. [1 ]
机构
[1] Panjab Univ, Dept Phys, Chandigarh 160014, India
[2] Karunya Univ, Dept Phys, Coimbatore 641114, Tamil Nadu, India
关键词
generalized nonlinear Schrodinger equation; solitary wave solutions; periodic solutions; negative-index materials; METAMATERIALS; SOLITONS;
D O I
10.1080/09500340.2013.815813
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present a detailed analysis for the existence of dark and bright solitary waves as also fractional-transform solutions in a nonlinear Schrodinger equation model for competing cubic-quintic and higher-order nonlinearities with dispersive permittivity and permeability. Parameter domains are delineated in which these ultrashort optical pulses exist in negative-index materials (NIMs). For example, dark solitons exist for the case of normal second-order dispersion, anomalous third-order dispersion, self-focusing Kerr nonlinearity, and non-Kerr nonlinearities, while the bright solitons exist for the case of anomalous second-order dispersion, normal third-order dispersion, self-focusing Kerr nonlinearity, and non-Kerr nonlinearities. This is contrary to the situation in ordinary materials.
引用
收藏
页码:836 / 840
页数:5
相关论文
共 50 条
  • [21] Soliton propagation in negative-index materials with self-steepening effect
    Loomba, Shally
    Rajan, Murugan Senthil Mani
    Gupta, Rama
    Mahalingam, Arumugam
    EUROPEAN PHYSICAL JOURNAL D, 2014, 68 (05)
  • [22] Topological interface modes in photonic superlattices containing negative-index materials
    Deng, Hanying
    Chen, Yihang
    Huang, Changming
    Ye, Fangwei
    EPL, 2018, 124 (06)
  • [23] Bright and Singular Optical Solitons in Nonlinear Negative-Index Materials with Quadratic-Cubic Nonlinearity
    Rezazadeh, Hadi
    Abazari, Reza
    Justin, Mibaile
    Bekir, Ahmet
    Korkmaz, Alper
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2021, 46 (06) : 5977 - 5991
  • [24] The periodic wave solutions and solitary wave solutions for a class of nonlinear partial differential equations
    Zhou, YB
    Wang, ML
    Miao, TD
    PHYSICS LETTERS A, 2004, 323 (1-2) : 77 - 88
  • [25] SOLITARY-WAVE AND PERIODIC SOLUTIONS OF THE KURAMOTO-VELARDE DISPERSIVE EQUATION
    Kamenov, Ognyan Y.
    JOURNAL OF THEORETICAL AND APPLIED MECHANICS-BULGARIA, 2016, 46 (03): : 65 - 74
  • [26] Optical parametric amplifications in parity-time symmetric negative-index materials
    Gupta S.K.
    Sarma A.K.
    Journal of Optics, 2018, 47 (1) : 115 - 120
  • [27] Backward phase-matching for nonlinear optical generation in negative-index materials
    Lan, Shoufeng
    Kang, Lei
    Schoen, David T.
    Rodrigues, Sean P.
    Cui, Yonghao
    Brongersma, Mark L.
    Cai, Wenshan
    NATURE MATERIALS, 2015, 14 (08) : 807 - +
  • [28] Effect of phase mismatch on second-harmonic generation in negative-index materials
    Kudyshev, Zh.
    Gabitov, I.
    Maimistov, A.
    PHYSICAL REVIEW A, 2013, 87 (06):
  • [29] Periodic Wave, Solitary Wave and Compacton Solutions of a Nonlinear Wave Equation with Degenerate Dispersion
    朱文静
    陈爱永
    刘期怀
    CommunicationsinTheoreticalPhysics, 2015, 63 (01) : 57 - 62
  • [30] A Variety of Exact Periodic Wave and Solitary Wave Solutions for the Coupled Higgs Equation
    Triki, Houria
    Wazwaz, Abdul-Majid
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2012, 67 (10-11): : 545 - 549