Fourier Series of Gegenbauer-Sobolev Polynomials

被引:12
作者
Ciaurri, Oscar [1 ]
Minguez, Judit [1 ]
机构
[1] Univ La Rioja, Dept Matemat & Computac, Logrono 26006, Spain
关键词
Sobolev-type inner product; Sobolev polynomials; Gegenbauer polynomials; partial sum operator; GENERALIZED JACOBI SERIES; MEAN CONVERGENCE; INTERPOLATING POLYNOMIALS; EXPANSIONS;
D O I
10.3842/SIGMA.2018.024
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the partial sum operator for a Sobolev-type inner product related to the classical Gegenbauer polynomials. A complete characterization of the partial sum operator in an appropriate Sobolev space is given. Moreover, we analyze the convergence of the partial sum operators.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] The Generalized Clifford-Gegenbauer Polynomials Revisited
    Nele De Schepper
    [J]. Advances in Applied Clifford Algebras, 2009, 19 : 253 - 268
  • [42] Quantitative comparison of Gegenbauer, filtered Fourier, and Fourier reconstruction for MRI
    Roberts, Brid
    Wan, Min
    Kelly, Simon
    Healy, John J.
    [J]. MULTIMODAL BIOMEDICAL IMAGING XV, 2020, 11232
  • [43] On the L2-norm of Gegenbauer polynomials
    Ferizovic, Damir
    [J]. MATHEMATICAL SCIENCES, 2022, 16 (02) : 115 - 119
  • [44] Weighted L2-norms of Gegenbauer polynomials
    Brauchart, Johann S.
    Grabner, Peter J.
    [J]. AEQUATIONES MATHEMATICAE, 2022, 96 (04) : 741 - 762
  • [45] Application of Gegenbauer polynomials for biunivalent functions defined by subordination
    Sakar, Fethiye Muge
    Hussain, Saqib
    Ahmad, Ibrar
    [J]. TURKISH JOURNAL OF MATHEMATICS, 2022, 46 (03) : 1089 - 1098
  • [46] Certain properties of Gegenbauer polynomials via Lie algebra
    Prajapati, Jyotindra C.
    Choi, Junesang
    Kachhia, Krunal B.
    Agarwal, Praveen
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2017, 111 (04) : 1031 - 1037
  • [47] On the Local Time of Random Walks Associated with Gegenbauer Polynomials
    Guillotin-Plantard, Nadine
    [J]. JOURNAL OF THEORETICAL PROBABILITY, 2011, 24 (04) : 1157 - 1169
  • [48] Matrix-Valued Gegenbauer-Type Polynomials
    Erik Koelink
    Ana M. de los Ríos
    Pablo Román
    [J]. Constructive Approximation, 2017, 46 : 459 - 487
  • [49] Matrix-Valued Gegenbauer-Type Polynomials
    Koelink, Erik
    de los Rios, Ana M.
    Roman, Pablo
    [J]. CONSTRUCTIVE APPROXIMATION, 2017, 46 (03) : 459 - 487
  • [50] On the Local Time of Random Walks Associated with Gegenbauer Polynomials
    Nadine Guillotin-Plantard
    [J]. Journal of Theoretical Probability, 2011, 24 : 1157 - 1169