Fourier Series of Gegenbauer-Sobolev Polynomials

被引:13
作者
Ciaurri, Oscar [1 ]
Minguez, Judit [1 ]
机构
[1] Univ La Rioja, Dept Matemat & Computac, Logrono 26006, Spain
关键词
Sobolev-type inner product; Sobolev polynomials; Gegenbauer polynomials; partial sum operator; GENERALIZED JACOBI SERIES; MEAN CONVERGENCE; INTERPOLATING POLYNOMIALS; EXPANSIONS;
D O I
10.3842/SIGMA.2018.024
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the partial sum operator for a Sobolev-type inner product related to the classical Gegenbauer polynomials. A complete characterization of the partial sum operator in an appropriate Sobolev space is given. Moreover, we analyze the convergence of the partial sum operators.
引用
收藏
页数:11
相关论文
共 16 条
[1]  
Bavinck H., 1989, APPL ANAL, V33, P103, DOI 10.1080/00036818908839864
[2]   A COHEN TYPE INEQUALITY FOR GEGENBAUER-SOBOLEV EXPANSIONS [J].
Fejzullahu, Bujar Xh. ;
Marcellan, Francisco .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2013, 43 (01) :135-148
[3]  
Guadalupe J. J., 1991, PUBL MAT, V35, P449
[4]  
Guadalupe JJ, 1996, CONSTR APPROX, V12, P341
[5]   On Sobolev orthogonal polynomials [J].
Marcellan, Francisco ;
Xu, Yuan .
EXPOSITIONES MATHEMATICAE, 2015, 33 (03) :308-352
[6]   On the Pollard decomposition method applied to some Jacobi-Sobolev expansions [J].
Marcellan, Francisco ;
Quintana, Yamilet ;
Urieles, Alejandro .
TURKISH JOURNAL OF MATHEMATICS, 2013, 37 (06) :934-948
[7]   Estimates for polynomials orthogonal with respect to some Gegenbauer-Sobolev type inner product [J].
Moreno, AF ;
Marcellán, F ;
Osilenker, BP .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 1999, 3 (04) :401-419
[8]   MEAN CONVERGENCE OF JACOBI SERIES [J].
MUCKENHO.B .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 23 (02) :306-&
[9]  
MUCKENHOUPT B, 1986, MEM AM MATH SOC, V64, P1
[10]   MEAN CONVERGENCE OF LAGRANGE INTERPOLATION .3. [J].
NEVAI, P .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 282 (02) :669-698