The integral option in a model with jumps

被引:4
|
作者
Gapeev, Pavel V. [1 ]
机构
[1] London Sch Econ, Dept Math, London WC2A 2AE, England
关键词
D O I
10.1016/j.spl.2008.02.028
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We present a closed form solution to be considered in Kramkov and Mordecki [Kramkov, D.O., Mordecki, E., 1994. Integral option. Theory of Probability and its Applications 39 ( 1), 201-211] optimal stopping problem for the case of geometric compound Poisson process with exponential jumps. The method of proof is based on reducing the initial problem to an integro-differential free-boundary problem and solving the latter by Using continuous and smooth fit. The result call be interpreted as pricing perpetual integral options ill a model with jumps. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:2623 / 2631
页数:9
相关论文
共 50 条
  • [21] Pricing and hedging of asian option under jumps
    Boughamoura, Wissem
    Pandey, Anand N.
    Trabelsi, Faouzi
    IAENG International Journal of Applied Mathematics, 2011, 41 (04) : 310 - 319
  • [22] Option Pricing with Fractional Stochastic Volatilities and Jumps
    Zhang, Sumei
    Yong, Hongquan
    Xiao, Haiyang
    FRACTAL AND FRACTIONAL, 2023, 7 (09)
  • [23] Bitcoin: jumps, convenience yields, and option prices
    Hilliard, Jimmy E.
    Ngo, Julie T. D.
    QUANTITATIVE FINANCE, 2022, 22 (11) : 2079 - 2091
  • [24] A generalization of integral option
    Volkov, S.N.
    Vestnik Moskovskogo Universiteta, Seriya 1 (Matematika Mekhanika), (06): : 51 - 54
  • [25] A generalization of integral option
    Volkov, SN
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1995, (06): : 51 - 55
  • [26] A down-and-out exchange option model with jumps to evaluate firms' default probabilities in Brazil
    da Silveira Barbedo, Claudio Henrique
    Lemgruber, Eduardo Faco
    EMERGING MARKETS REVIEW, 2009, 10 (03) : 179 - 190
  • [27] OPTION PRICING UNDER STOCHASTIC VOLATILITY MODEL WITH JUMPS IN BOTH THE STOCK PRICE AND THE VARIANCE PROCESSES
    Kim, Ju Hong
    JOURNAL OF THE KOREAN SOCIETY OF MATHEMATICAL EDUCATION SERIES B-PURE AND APPLIED MATHEMATICS, 2014, 21 (04): : 295 - 305
  • [28] Closed-form expansion for option price under stochastic volatility model with concurrent jumps
    Chen, Dachuan
    Li, Chenxu
    IISE TRANSACTIONS, 2023, 55 (08) : 781 - 793
  • [29] Pricing arithmetic Asian option under a two-factor stochastic volatility model with jumps
    Mehrdoust, Farshid
    Saber, Naghmeh
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2015, 85 (18) : 3811 - 3819
  • [30] Real option pricing under the regime-switching model with jumps on a finite time horizon
    Lee, Sunju
    Lee, Younhee
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 448