On Deep Learning Models for Detection of Thunderstorm Gale

被引:5
作者
Li, Yan [1 ]
Li, Haifeng [2 ]
Li, Xutao [2 ]
Li, Xian [2 ]
Xie, Pengfei [2 ]
机构
[1] Shenzhen Polytech, Sch Artificial Intelligence, Shenzhen, Peoples R China
[2] Harbin Inst Technol, Shenzhen Key Lab Internet Informat Collaborat, Shenzhen, Peoples R China
来源
JOURNAL OF INTERNET TECHNOLOGY | 2020年 / 21卷 / 04期
关键词
Radar echo images; Thunderstorm gale; detection; Machine learning; Deep learning;
D O I
10.3966/160792642020072104001
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The purpose of this paper is to perform a comprehensive study on the performance of different deep learning models for detection of thunderstorm gale. We construct a benchmark dataset from the radar echo images in Guangdong province of China. Each radar image is partially labeled according to the wind velocities recorded by meteorological observation stations. We design four deep learning models to address the thunderstorm gale detection problem, including a simple convolution neural network (CNN), a recurrent neural network (S-RCNN), a time context recurrent convolutional neural network (T-RCNN), and a spatio-temporal recurrent convolutional neural network (ST-RCNN). Ten traditional machine learning algorithms are selected as comparison baselines. Experimental results demonstrate that four deep learning models can achieved better detection performance than traditional machine learning algorithms.
引用
收藏
页码:909 / 917
页数:9
相关论文
共 13 条
[1]  
Darrah R. P., 2009, MONTHLY WEATHER REV, V106, P1332
[2]  
Dong G H., 2007, METEOROLOGICAL TECHN, V35, P877
[3]  
Johns RH, 1987, WEATHER FORECAST, V2, P32, DOI 10.1175/1520-0434(1987)002<0032:DWCIW>2.0.CO
[4]  
2
[5]  
Li G., 2011, J METEOROL, V72, P168
[6]  
Li Guocui, 2013, J METEOROL, V71, P1160
[7]  
Liao Yufang, 2006, METEOROLOGICAL SCI, V26, P564
[8]  
Wang Fengjiao, 2006, SHANDONG METEOROLOGY, V26, P15
[9]  
Yan Xiuguang, 2009, METEOROLOGICAL TECHN, V37, P230
[10]   New intelligent interface study based on K-means gaze tracking [J].
Yu, Jing ;
Li, Hang ;
Yin, Shoulin .
INTERNATIONAL JOURNAL OF COMPUTATIONAL SCIENCE AND ENGINEERING, 2019, 18 (01) :12-20