Three-step Mann iterations for a general system of variational inequalities and an infinite family of nonexpansive mappings in Banach spaces

被引:2
作者
Ceng, Lu-Chuan [1 ,2 ]
Wen, Ching-Feng [3 ]
机构
[1] Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
[2] Sci Comp Key Lab Shanghai Univ, Shanghai 200234, Peoples R China
[3] Kaohsiung Med Univ, Ctr Fundamental Sci, Kaohsiung 807, Taiwan
基金
美国国家科学基金会;
关键词
three-step Mann iterations; general system of variational inequalities; infinitely many nonexpansive mappings; sunny nonexpansive retraction; fixed point; strictly convex Banach space; uniformly smooth Banach space; reflexive Banach space with weakly continuous duality map; FIXED-POINT PROBLEMS; WEAK-CONVERGENCE THEOREMS; VISCOSITY APPROXIMATION METHODS; EXTRAGRADIENT METHOD; ISHIKAWA ITERATION; SPLIT FEASIBILITY; ALGORITHMS; SEQUENCES;
D O I
10.1186/1029-242X-2013-539
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, let X be a uniformly convex Banach space which either is uniformly smooth or has a weakly continuous duality map. We introduce and consider three-step Mann iterations for finding a common solution of a general system of variational inequalities (GSVI) and a fixed point problem (FPP) of an infinite family of nonexpansive mappings in X. Here three-step Mann iterations are based on Korpelevich's extragradient method, the viscosity approximation method and the Mann iteration method. We prove the strong convergence of this method to a common solution of the GSVI and the FPP, which solves a variational inequality on their common solution set. We also give a weak convergence theorem for three-step Mann iterations involving the GSVI and the FPP in a Hilbert space. The results presented in this paper improve, extend, supplement and develop the corresponding results announced in the earlier and very recent literature.
引用
收藏
页数:27
相关论文
共 52 条
[1]   Weak convergence of an iterative sequence for accretive operators in Banach spaces [J].
Aoyama, Koji ;
Iiduka, Hideaki ;
Takahashi, Wataru .
FIXED POINT THEORY AND APPLICATIONS, 2006, 2006 (1)
[2]   Approximation of common fixed points of a countable family of nonexpansive mappings in a Banach space [J].
Aoyama, Koji ;
Kimura, Yasunori ;
Takahashi, Wataru ;
Toyoda, Masashi .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 67 (08) :2350-2360
[3]   CONVERGENCE THEOREMS FOR SEQUENCES OF NONLINEAR OPERATORS IN BANACH SPACES [J].
BROWDER, FE .
MATHEMATISCHE ZEITSCHRIFT, 1967, 100 (03) :201-&
[4]   PROPERTIES OF FIXED-POINT SETS OF NONEXPANSIVE MAPPINGS IN BANACH SPACES [J].
BRUCK, RE .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 179 (MAY) :251-262
[5]   Convergence analysis for variational inequality problems and fixed point problems in 2-uniformly smooth and uniformly convex Banach spaces [J].
Cai, Gang ;
Bu, Shangquan .
MATHEMATICAL AND COMPUTER MODELLING, 2012, 55 (3-4) :538-546
[6]   Strong and weak convergence theorems for an infinite family of nonexpansive mappings and applications [J].
Ceng, L. C. ;
Wong, N. C. ;
Yao, J. C. .
FIXED POINT THEORY AND APPLICATIONS, 2012,
[7]   Relaxed extragradient methods for finding minimum-norm solutions of the split feasibility problem [J].
Ceng, L. -C. ;
Ansari, Q. H. ;
Yao, J. -C. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (04) :2116-2125
[8]   Krasnoselski-Mann Iterations for Hierarchical Fixed Point Problems for a Finite Family of Nonself Mappings in Banach Spaces [J].
Ceng, L. C. ;
Petrusel, A. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2010, 146 (03) :617-639
[9]   Weak Convergence of an Iterative Method for Pseudomonotone Variational Inequalities and Fixed-Point Problems [J].
Ceng, L. C. ;
Teboulle, M. ;
Yao, J. C. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2010, 146 (01) :19-31
[10]   An extragradient method for solving split feasibility and fixed point problems [J].
Ceng, L-C ;
Ansari, Q. H. ;
Yao, J-C .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 64 (04) :633-642