Detecting and realising characteristic classes of manifold bundles

被引:2
作者
Galatius, Soren [1 ]
Randal-Williams, Oscar [2 ]
机构
[1] Stanford Univ, Dept Math, Stanford, CA 94305 USA
[2] DPMMS, Cambridge CB3 0WB, England
来源
ALGEBRAIC TOPOLOGY: APPLICATIONS AND NEW DIRECTIONS | 2014年 / 620卷
关键词
HOMOLOGY;
D O I
10.1090/conm/620/12365
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We apply our earlier work on the higher-dimensional analogue of the Mumford conjecture to two questions. Inspired by work of Ebert we prove non-triviality of certain characteristic classes of bundles of smooth closed manifolds. Inspired by work of Church-Farb-Thibault and Church-Crossley-Giansiracusa we investigate the dependence of characteristic classes of bundles on characteristic numbers of its fibre, total space and base space.
引用
收藏
页码:99 / 110
页数:12
相关论文
共 10 条
[1]   HOMOLOGY OF NON-CONNECTED MONOIDS AND THEIR ASSOCIATED GROUPS [J].
BARRATT, M ;
PRIDDY, S .
COMMENTARII MATHEMATICI HELVETICI, 1972, 47 (01) :1-&
[2]   INVARIANCE PROPERTIES OF MILLER-MORITA-MUMFORD CHARACTERISTIC NUMBERS OF FIBRE BUNDLES [J].
Church, Thomas ;
Crossley, Martin ;
Giansiracusa, Jeffrey .
QUARTERLY JOURNAL OF MATHEMATICS, 2013, 64 (03) :729-746
[3]   On the geometric nature of characteristic classes of surface bundles [J].
Church, Thomas ;
Farb, Benson ;
Thibault, Matthew .
JOURNAL OF TOPOLOGY, 2012, 5 (03) :575-592
[4]   A vanishing theorem for characteristic classes of odd-dimensional manifold bundles [J].
Ebert, Johannes .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2013, 684 :1-29
[5]   Algebraic independence of generalized MMM-classes [J].
Ebert, Johannes .
ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2011, 11 (01) :69-105
[6]   Mod p homology of the stable mapping class group [J].
Galatius, S .
TOPOLOGY, 2004, 43 (05) :1105-1132
[7]  
Galatius Soren, 2012, ACTA MATH IN PRESS
[8]   Surgery and duality [J].
Kreck, M .
ANNALS OF MATHEMATICS, 1999, 149 (03) :707-754
[9]   MANIFOLDS WITH UNIQUE DIFFERENTIABLE STRUCTURE [J].
KRECK, M .
TOPOLOGY, 1984, 23 (02) :219-232
[10]   The stable moduli space of Riemann surfaces: Mumford's conjecture [J].
Madsen, Ib ;
Weiss, Michael .
ANNALS OF MATHEMATICS, 2007, 165 (03) :843-941