Fractal dimension and the persistent homology of random geometric complexes

被引:8
|
作者
Schweinhart, Benjamin [1 ]
机构
[1] 231 W 18th Ave, Columbus, OH 43210 USA
关键词
Persistent homology; Minimum spanning tree; Fractal dimension; Random geometric complexes; Topological data analysis; Ahlfors regular; MINIMAL SPANNING-TREES; BOUNDARY; TOPOLOGY;
D O I
10.1016/j.aim.2020.107291
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the fractal dimension of a metric space equipped with an Ahlfors regular measure can be recovered from the persistent homology of random samples. Our main result is that if x(1), ..., x(n) are i.i.d. samples from a d-Ahlfors regular measure on a metric space, and E-alpha(0)(x(1), ..., x(n)) denotes the alpha-weight of the minimum spanning tree on x(1), ..., x(n): E-alpha(0)(x(1), ..., x(n)) = Sigma(e is an element of T(x1,...,xn)) vertical bar e vertical bar(alpha), then there exist constants 0 < C-1 <= C-2 so that C-1 <= n(-d-alpha/d) E-alpha(0)(x(1), ..., x(n)) <= C-2 with high probability as n -> infinity. In particular, d can be recovered from the limit log(E-alpha(0)(x(1), ..., x(n))) / log(n) -> (d - alpha)/d This is a generalization of a result of Steele [62] from the non-singular case to the fractal setting. We also construct an example of an Ahlfors regular measure for which the limit lim(n ->infinity) n(-d-alpha/d) E-alpha(0)(x(1), ..., x(n)) does not exist with high probability, and prove analogous results for weighted sums defined in terms of higher dimensional persistent homology. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:59
相关论文
共 50 条
  • [1] A Fractal Dimension for Measures via Persistent Homology
    Adams, Henry
    Aminian, Manuchehr
    Farnell, Elin
    Kirby, Michael
    Mirth, Joshua
    Neville, Rachel
    Peterson, Chris
    Shonkwiler, Clayton
    TOPOLOGICAL DATA ANALYSIS, ABEL SYMPOSIUM 2018, 2020, 15 : 1 - 31
  • [2] Fractal dimension estimation with persistent homology: A comparative study
    Jaquette, Jonathan
    Schweinhart, Benjamin
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2020, 84 (84):
  • [3] MAXIMALLY PERSISTENT CYCLES IN RANDOM GEOMETRIC COMPLEXES
    Bobrowski, Omer
    Kahle, Matthew
    Skraba, Primoz
    ANNALS OF APPLIED PROBABILITY, 2017, 27 (04): : 2032 - 2060
  • [4] Geometric Approaches to Persistent Homology
    Adams, Henry
    Coskunuzer, Baris
    SIAM JOURNAL ON APPLIED ALGEBRA AND GEOMETRY, 2022, 6 (04) : 685 - 710
  • [5] Persistent Homology and the Upper Box Dimension
    Benjamin Schweinhart
    Discrete & Computational Geometry, 2021, 65 : 331 - 364
  • [6] Persistent Homology and the Upper Box Dimension
    Schweinhart, Benjamin
    DISCRETE & COMPUTATIONAL GEOMETRY, 2021, 65 (02) : 331 - 364
  • [7] Fractal dimension of random processes
    Denisov, SI
    CHAOS SOLITONS & FRACTALS, 1998, 9 (09) : 1491 - 1496
  • [8] Distribution in homology classes and discrete fractal dimension
    Everitt, James
    Sharp, Richard
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2024,
  • [9] Fractal dimension of a random invariant set
    Langa, JA
    Robinson, JC
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2006, 85 (02): : 269 - 294
  • [10] THE FRACTAL DIMENSION AND CONNECTIVITY OF RANDOM SURFACES
    CATES, ME
    PHYSICS LETTERS B, 1985, 161 (4-6) : 363 - 367