Impaired lymph node stromal cell function during the earliest phases of rheumatoid arthritis

被引:23
|
作者
Hahnlein, Janine S. [1 ,2 ]
Nadafi, Reza [3 ]
de Jong, Tineke [1 ,2 ]
Ramwadhdoebe, Tamara H. [1 ,2 ]
Semmelink, Johanna F. [1 ,2 ]
Maijer, Karen I. [1 ]
Zijlstra, IJsbrand A. [4 ]
Maas, Mario [4 ]
Gerlag, Danielle M. [1 ,5 ]
Geijtenbeek, Teunis B. H. [2 ]
Tak, Paul P. [1 ,6 ,7 ,8 ]
Mebius, Reina E. [3 ]
van Baarsen, Lisa G. M. [1 ,2 ]
机构
[1] Univ Amsterdam, Acad Med Ctr, Amsterdam Rheumatol & Immunol Ctr ARC, Dept Clin Immunol & Rheumatol, Meibergdreef 9, NL-1105 AZ Amsterdam, Netherlands
[2] Univ Amsterdam, Acad Med Ctr, Dept Expt Immunol, Meibergdreef 9, NL-1105 AZ Amsterdam, Netherlands
[3] Vrije Univ Amsterdam Med Ctr, Dept Mol Cell Biol & Immunol, Amsterdam, Netherlands
[4] Univ Amsterdam, Acad Med Ctr, Dept Radiol, Amsterdam, Netherlands
[5] GlaxoSmithKline, Clin Unit Cambridge, Cambridge, England
[6] Univ Ghent, Ghent, Belgium
[7] Univ Cambridge, Cambridge, England
[8] GlaxoSmithKline, Stevenage, Herts, England
关键词
Lymph node stromal cells; Early rheumatoid arthritis; Autoimmunity; Tolerance; Immunity; FIBROBLASTIC RETICULAR CELLS; AT-RISK; HOMEOSTASIS; TOLERANCE; BIOPSY; PROLIFERATION; PATHOGENESIS; INDIVIDUALS; SYNOVIUM; FEATURES;
D O I
10.1186/s13075-018-1529-8
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: Systemic autoimmunity can be present years before clinical onset of rheumatoid arthritis (RA). Adaptive immunity is initiated in lymphoid tissue where lymph node stromal cells (LNSCs) regulate immune responses through their intimate connection with leucocytes. We postulate that malfunctioning of LNSCs creates a microenvironment in which normal immune responses are not properly controlled, possibly leading to autoimmune disease. In this study we established an experimental model for studying the functional capacities of human LNSCs during RA development. Methods: Twenty-four patients with RA, 23 individuals positive for autoantibodies but without clinical disease (RA risk group) and 14 seronegative healthy control subjects underwent ultrasound-guided inguinal lymph node (LN) biopsy. Human LNSCs were isolated and expanded in vitro for functional analyses. In analogous co-cultures consisting of LNSCs and peripheral blood mononuclear cells, aCD3/aCD28-induced T-cell proliferation was measured using carboxyfluorescein diacetate succinimidyl ester dilution. Results: Fibroblast-like cells expanded from the LN biopsy comprised of fibroblastic reticular cells (gp38(+)CD31(-)) and double-negative (gp38(-)CD31(-)) cells. Cultured LNSCs stably expressed characteristic adhesion molecules and cytokines. Basal expression of C-X-C motif chemokine ligand 12 (CXCL12) was lower in LNSCs from RA risk individuals than in those from healthy control subjects. Key LN chemokines C-C motif chemokine ligand (CCL19), CCL21 and CXCL13 were induced in LNSCs upon stimulation with tumour necrosis factor-alpha and lymphotoxin alpha(1)beta(2), but to a lesser extent in LNSCs from patients with RA. The effect of human LNSCs on T-cell proliferation was ratio-dependent and altered in RA LNSCs. Conclusions: Overall, we developed an experimental model to facilitate research on the role of LNSCs during the earliest phases of RA. Using this innovative model, we show, for the first time to our knowledge, that the LN stromal environment is changed during the earliest phases of RA, probably contributing to deregulated immune responses early in disease pathogenesis.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Myeloid Dendritic Cells Are Enriched in Lymph Node Tissue of Early Rheumatoid Arthritis Patients but not in At Risk Individuals
    Ramwadhdoebe, T. H.
    Ramos, M., I
    Maijer, K., I
    van Lienden, K. P.
    Maas, M.
    Gerlag, D. M.
    Tak, P. P.
    Lebre, M. C.
    van Baarsen, L. G. M.
    CELLS, 2019, 8 (07)
  • [22] Reduced DEAF1 function during type 1 diabetes inhibits translation in lymph node stromal cells by suppressing Eif4g3
    Yip, Linda
    Creusot, Remi J.
    Pager, Cara T.
    Sarnow, Peter
    Fathman, C. Garrison
    JOURNAL OF MOLECULAR CELL BIOLOGY, 2013, 5 (02) : 99 - 110
  • [23] RANKL Induces Organized Lymph Node Growth by Stromal Cell Proliferation
    Hess, Estelle
    Duheron, Vincent
    Decossas, Marion
    Lezot, Frederic
    Berdal, Ariane
    Chea, Sylvestre
    Golub, Rachel
    Bosisio, Matteo R.
    Bridal, S. Lori
    Choi, Yongwon
    Yagita, Hideo
    Mueller, Christopher G.
    JOURNAL OF IMMUNOLOGY, 2012, 188 (03) : 1245 - 1254
  • [24] Lymph node vascular-stromal growth and function as a potential target for controlling immunity
    Benahmed, Fairouz
    Ely, Scott
    Lu, Theresa T.
    CLINICAL IMMUNOLOGY, 2012, 144 (02) : 109 - 116
  • [25] Infection Programs Sustained Lymphoid Stromal Cell Responses and Shapes Lymph Node Remodeling upon Secondary Challenge
    Gregory, Julia L.
    Walter, Anne
    Alexandre, Yannick O.
    Hor, Jyh Liang
    Liu, Ruijie
    Ma, Joel Z.
    Devi, Sapna
    Tokuda, Nobuko
    Owada, Yuji
    Mackay, Laura K.
    Smyth, Gordon K.
    Heath, William R.
    Mueller, Scott N.
    CELL REPORTS, 2017, 18 (02): : 406 - 418
  • [26] Mesenchymal stem/stromal cell-based therapy for the treatment of rheumatoid arthritis: An update on preclinical studies
    Lopez-Santalla, Mercedes
    Bueren, Juan A.
    Garin, Marina, I
    EBIOMEDICINE, 2021, 69
  • [27] Stromal cell-derived factor-1 as a potential therapeutic target for osteoarthritis and rheumatoid arthritis
    Bragg, Robert
    Gilbert, William
    Elmansi, Ahmed M.
    Isales, Carlos M.
    Hamrick, Mark W.
    Hill, William D.
    Fulzele, Sadanand
    THERAPEUTIC ADVANCES IN CHRONIC DISEASE, 2019, 10
  • [28] Distinct stromal and immune cell interactions shape the pathogenesis of rheumatoid and psoriatic arthritis
    Floudas, Achilleas
    Smith, Conor M.
    Tynan, Orla
    Neto, Nuno
    Krishna, Vinod
    Wade, Sarah M.
    Hanlon, Megan
    Cunningham, Clare
    Marzaioli, Viviana
    Canavan, Mary
    Fletcher, Jean M.
    Mullan, Ronan H.
    Cole, Suzanne
    Hao, Ling-Yang
    Monaghan, Michael G.
    Nagpal, Sunil
    Veale, Douglas J.
    Fearon, Ursula
    ANNALS OF THE RHEUMATIC DISEASES, 2022, 81 (09) : 1224 - 1242
  • [29] In vivo two-photon imaging of T cell motility in joint-draining lymph nodes in a mouse model of rheumatoid arthritis
    Kobezda, Tamas
    Ghassemi-Nejad, Sheida
    Giant, Tibor T.
    Mikecz, Katalin
    CELLULAR IMMUNOLOGY, 2012, 278 (1-2) : 158 - 165
  • [30] Impaired cutaneous cell-mediated immunity in newly diagnosed rheumatoid arthritis
    Coaccioli, S
    Di Cato, L
    Marioli, D
    Patucchi, E
    Pizzuti, C
    Ponteggia, M
    Puxeddu, A
    PANMINERVA MEDICA, 2000, 42 (04) : 263 - 266