THE SEMIGROUPS OF BINARY SYSTEMS AND SOME PERSPECTIVES

被引:35
作者
Kim, Hee Sik [1 ]
Neggers, Joseph [2 ]
机构
[1] Hanyang Univ, Dept Math, Seoul 133791, South Korea
[2] Univ Alabama, Dept Math, Tuscaloosa, AL 35487 USA
关键词
leftoid; semigroup; binary system; orientation (property); (travel; linear); groupoid; orbit; strong; d-algebra; separable;
D O I
10.4134/BKMS.2008.45.4.651
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given binary operations "*" and "circle" on a set X, define a product binary operation "square" as follows: x square y := (x * y) circle (y * x). This in turn yields a binary operation on (Bin(X), square)the set of groupoids defined on X turning it into a semigroup (Bin(X), square)with identity (x*y = x) the left zero semigroup and an analog of negative one in the right zero semigroup (x * y = y). The composition square is a generalization of the composition of functions, modelled here as leftoids (x*y = f(x)), permitting one to study the dynamics of binary systems as well as a variety of other perspectives also of interest.
引用
收藏
页码:651 / 661
页数:11
相关论文
共 11 条
  • [1] CIGNOLI RLO, 2000, ALGEBRAIC FFOUNDATIO
  • [2] DVURECENSKIJ A, 2000, MATH ITS APPL, V516
  • [3] HAN JS, J MULTIVALU IN PRESS
  • [4] Huang Y., 2006, BCI-algebra
  • [5] Meng J., 1994, BCK ALGEBRAS
  • [6] An algebraic characterization of geodetic graphs
    Nebesky, L
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 1998, 48 (04) : 701 - 710
  • [7] Nebesky L., 2000, MATH BOHEM, V125, P455
  • [8] Travel groupoids
    Nebesky, Ladislav
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2006, 56 (02) : 659 - 675
  • [9] On d-fuzzy functions in d-algebras
    Neggers, J
    Dvurecenskij, A
    Kim, HS
    [J]. FOUNDATIONS OF PHYSICS, 2000, 30 (10) : 1807 - 1816
  • [10] Neggers J., 1999, MATH SLOVACA, V49, P243