THE SEMIGROUPS OF BINARY SYSTEMS AND SOME PERSPECTIVES

被引:37
作者
Kim, Hee Sik [1 ]
Neggers, Joseph [2 ]
机构
[1] Hanyang Univ, Dept Math, Seoul 133791, South Korea
[2] Univ Alabama, Dept Math, Tuscaloosa, AL 35487 USA
关键词
leftoid; semigroup; binary system; orientation (property); (travel; linear); groupoid; orbit; strong; d-algebra; separable;
D O I
10.4134/BKMS.2008.45.4.651
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given binary operations "*" and "circle" on a set X, define a product binary operation "square" as follows: x square y := (x * y) circle (y * x). This in turn yields a binary operation on (Bin(X), square)the set of groupoids defined on X turning it into a semigroup (Bin(X), square)with identity (x*y = x) the left zero semigroup and an analog of negative one in the right zero semigroup (x * y = y). The composition square is a generalization of the composition of functions, modelled here as leftoids (x*y = f(x)), permitting one to study the dynamics of binary systems as well as a variety of other perspectives also of interest.
引用
收藏
页码:651 / 661
页数:11
相关论文
共 11 条
[1]  
CIGNOLI RLO, 2000, ALGEBRAIC FFOUNDATIO
[2]  
DVURECENSKIJ A, 2000, MATH ITS APPL, V516
[3]  
HAN JS, J MULTIVALU IN PRESS
[4]  
Huang Y., 2006, BCI-algebra
[5]  
Meng J., 1994, BCK ALGEBRAS
[6]   An algebraic characterization of geodetic graphs [J].
Nebesky, L .
CZECHOSLOVAK MATHEMATICAL JOURNAL, 1998, 48 (04) :701-710
[7]  
Nebesky L., 2000, MATH BOHEM, V125, P455
[8]   Travel groupoids [J].
Nebesky, Ladislav .
CZECHOSLOVAK MATHEMATICAL JOURNAL, 2006, 56 (02) :659-675
[9]   On d-fuzzy functions in d-algebras [J].
Neggers, J ;
Dvurecenskij, A ;
Kim, HS .
FOUNDATIONS OF PHYSICS, 2000, 30 (10) :1807-1816
[10]  
Neggers J., 1999, MATH SLOVACA, V49, P243