Hybrid Films with Graphene Oxide and Metal Nanoparticles Could Now Replace Indium Tin Oxide

被引:43
作者
Varela-Rizo, Helena [2 ]
Martin-Gullon, Ignacio [2 ]
Terrones, Mauricio [1 ,3 ]
机构
[1] Penn State Univ, Dept Phys, University Pk, PA 16802 USA
[2] Univ Alicante, Dept Chem Engn, E-03080 Alicante, Spain
[3] Shinshu Univ, Res Ctr Exot Nanocarbons JST, Nagano 3808553, Japan
关键词
GRAPHITE OXIDE; HIGH-QUALITY; CARBON NANOTUBES; REDUCTION; TRANSPARENT; SHEETS; EXFOLIATION; ROUTE;
D O I
10.1021/nn302221q
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Graphene oxide (G-O), a highly oxidized sheet of sp(2)-hybridized carbon with insulating electrical properties, can be transformed into graphene if it is adequately reduced. In the past, researchers believed that reduced G-O (rG-O) could be highly conducting, but it has been shown that the presence of extended vacancies and defects within rG-O negatively affect its electrical transport. Although these observations indicated that rG-O could not be used in the fabrication of any electronic device, in this issue of ACS Nano, Ruoffs group demonstrates that rG-O can Indeed be used for producing efficient transparent conducting films (TCFs) if the rG-O material is coupled with Au nanoparticles (Au-NPs) and Ag nanowires (Ag-NWs). The work further demonstrates that these hybrid films containing zero-dimensional (Au-NPs), one-dimensional (Ag-NWs), and two-dimensional (rG-O) elements exhibit high optical transmittance (e.g., 90%) and low sheet resistance (20-30 Omega/rectangle), with values comparable to those of indium tin oxide (ITO) film. In addition, Ruoff's group notes that the presence of Ag-NWs and rG-O in the films showed antibacterial properties, thus demonstrating that it is now possible to produce flexible TCFs with bactericidel functions. The data show that smart hybrid films containing rG-O and different types of NPs and NWs could be synthesized easily and could result in smart films with unprecedented functions and applications.
引用
收藏
页码:4565 / 4572
页数:8
相关论文
共 45 条
[1]   Photodegradation of Graphene Oxide Sheets by TiO2 Nanoparticles after a Photocatalytic Reduction [J].
Akhavan, O. ;
Abdolahad, M. ;
Esfandiar, A. ;
Mohatashamifar, M. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (30) :12955-12959
[2]   Toxicity of Graphene and Graphene Oxide Nanowalls Against Bacteria [J].
Akhavan, Omid ;
Ghaderi, Elham .
ACS NANO, 2010, 4 (10) :5731-5736
[3]   Evaluation of solution-processed reduced graphene oxide films as transparent conductors [J].
Becerril, Hdctor A. ;
Mao, Jie ;
Liu, Zunfeng ;
Stoltenberg, Randall M. ;
Bao, Zhenan ;
Chen, Yongsheng .
ACS NANO, 2008, 2 (03) :463-470
[4]   Electronic confinement and coherence in patterned epitaxial graphene [J].
Berger, Claire ;
Song, Zhimin ;
Li, Xuebin ;
Wu, Xiaosong ;
Brown, Nate ;
Naud, Cecile ;
Mayou, Didier ;
Li, Tianbo ;
Hass, Joanna ;
Marchenkov, Atexei N. ;
Conrad, Edward H. ;
First, Phillip N. ;
de Heer, Wait A. .
SCIENCE, 2006, 312 (5777) :1191-1196
[5]  
Boehm H., 1962, P 5 C CARBON, P73, DOI [DOI 10.1016/B978-0-08-009707-7.50013-3, 10.1016/B978-0-08-009707-7.50013-3]
[6]  
BOEHM HP, 1962, Z NATURFORSCH PT B, VB 17, P150
[7]   Second-Order Overtone and Combination Raman Modes of Graphene Layers in the Range of 1690-2150 cm-1 [J].
Cong, Chunxiao ;
Yu, Ting ;
Saito, Riichiro ;
Dresselhaus, Gene F. ;
Dresselhaus, Mildred S. .
ACS NANO, 2011, 5 (03) :1600-1605
[8]   Flash Reduction and Patterning of Graphite Oxide and Its Polymer Composite [J].
Cote, Laura J. ;
Cruz-Silva, Rodolfo ;
Huang, Jiaxing .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (31) :11027-11032
[9]   Solvothermal processes: a route to the stabilization of new materials [J].
Demazeau, G .
JOURNAL OF MATERIALS CHEMISTRY, 1999, 9 (01) :15-18
[10]   Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material [J].
Eda, Goki ;
Fanchini, Giovanni ;
Chhowalla, Manish .
NATURE NANOTECHNOLOGY, 2008, 3 (05) :270-274