Investigation of the thermal-transport properties for silicon nanofilm covered with graphene via nonequilibrium molecular dynamics

被引:8
作者
Gao, Yufei [1 ]
Jing, Yuhang [1 ]
Meng, Qingyuan [1 ]
Zhang, Lu [2 ]
Liu, Jiaqiu [3 ]
Qin, Xian [1 ]
机构
[1] Harbin Inst Technol, Dept Astronaut Sci & Mech, Harbin 150001, Peoples R China
[2] China Med Univ, Shenyang 110001, Peoples R China
[3] Harbin Frp Res Inst, Harbin 150001, Peoples R China
来源
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS | 2012年 / 249卷 / 09期
关键词
graphene; molecular dynamics; silicon nanofilm; thermal-transport properties; CONDUCTIVITY; POTENTIALS; SIMULATION;
D O I
10.1002/pssb.201147586
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Nonequilibrium molecular dynamics (NEMD) is used to investigate the thermal-transport properties of a silicon nanofilm covered with graphene (Gr/Si/Gr nanofilm). The investigation results demonstrate that graphene can enhance the thermal-transport properties and weaken the ballistic characteristics of silicon nanofilm. Under the action of a small strain, the thermal conductivity decreases with the growth of tensile and compressive strain, respectively. In addition, the higher-frequency phonons in graphene give more contributions to the variation of thermal conductivity of Gr/Si/Gr nanofilm under strain. The thermal conductivity of Gr/Si/Gr nanofilm increases linearly with the increase of temperature in the lower-temperature regime due to the quantum effect, and begins to clearly decrease when the temperature exceeds a definite value.
引用
收藏
页码:1728 / 1734
页数:7
相关论文
共 43 条
[1]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[2]   MODIFIED EMBEDDED-ATOM POTENTIALS FOR CUBIC MATERIALS AND IMPURITIES [J].
BASKES, MI .
PHYSICAL REVIEW B, 1992, 46 (05) :2727-2742
[3]   Lattice thermal conductivity of silicon from empirical interatomic potentials [J].
Broido, DA ;
Ward, A ;
Mingo, N .
PHYSICAL REVIEW B, 2005, 72 (01)
[4]   Thermal Transport in Suspended and Supported Monolayer Graphene Grown by Chemical Vapor Deposition [J].
Cai, Weiwei ;
Moore, Arden L. ;
Zhu, Yanwu ;
Li, Xuesong ;
Chen, Shanshan ;
Shi, Li ;
Ruoff, Rodney S. .
NANO LETTERS, 2010, 10 (05) :1645-1651
[5]   Ballistic-diffusive equations for transient heat conduction from nano to macroscales [J].
Chen, G .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2002, 124 (02) :320-328
[6]   Monte Carlo simulation of silicon nanowire thermal conductivity [J].
Chen, YF ;
Li, DY ;
Lukes, JR ;
Majumdar, A .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2005, 127 (10) :1129-1137
[7]   Analytical potential for atomistic simulations of silicon, carbon, and silicon carbide [J].
Erhart, P ;
Albe, K .
PHYSICAL REVIEW B, 2005, 71 (03)
[8]   Thickness dependence of nanofilm elastic modulus [J].
Fedorchenko, Alexander I. ;
Wang, An-Bang ;
Cheng, Henry H. .
APPLIED PHYSICS LETTERS, 2009, 94 (15)
[9]   Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits [J].
Ghosh, S. ;
Calizo, I. ;
Teweldebrhan, D. ;
Pokatilov, E. P. ;
Nika, D. L. ;
Balandin, A. A. ;
Bao, W. ;
Miao, F. ;
Lau, C. N. .
APPLIED PHYSICS LETTERS, 2008, 92 (15)
[10]   Thermal Properties for Bulk Silicon Based on the Determination of Relaxation Times Using Molecular Dynamics [J].
Goicochea, Javier V. ;
Madrid, Marcela ;
Amon, Cristina .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2010, 132 (01) :1-11