Automatic Selection of Temperature Variables for Short-Term Load Forecasting

被引:1
作者
Candela Esclapez, Alfredo [1 ]
Lopez Garcia, Miguel [1 ]
Valero Verdu, Sergio [1 ]
Senabre Blanes, Carolina [1 ]
机构
[1] Miguel Hernandez Univ, Elect Engn Dept, Av Univ, Elche 03202, Spain
关键词
accuracy; interpretability; short-term load forecasting; temperature analysis; temperature processing; NEURAL-NETWORK; MODEL;
D O I
10.3390/su142013339
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Due to the infeasibility of large-scale electrical energy storage, electricity is generated and consumed simultaneously. Therefore, electricity entities need consumption forecasting systems to plan operations and manage supplies. In addition, accurate predictions allow renewable energies on electrical grids to be managed, thereby reducing greenhouse gas emissions. Temperature affects electricity consumption through air conditioning and heating equipment, although it is the consumer's behavior that determines specifically to what extent. This work proposes an automatic method of processing and selecting variables, with a two-fold objective: improving both the accuracy and the interpretability of the overall forecasting system. The procedure has been tested by the predictive system of the Spanish electricity operator (Red Electrica de Espana) with regard to peninsular demand. During the test period, the forecasting error was consistently reduced for the forecasting horizon, with an improvement of 0.16% in MAPE and 59.71 MWh in RMSE. The new way of working with temperatures is interpretable, since they separate the effect of temperature according to location and time. It has been observed that heat has a greater influence than the cold. In addition, on hot days, the temperature of the second previous day has a greater influence than the previous one, while the opposite occurs on cold days.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] Input variable selection for ANN-based short-term load forecasting
    Drezga, I
    Rahman, S
    IEEE TRANSACTIONS ON POWER SYSTEMS, 1998, 13 (04) : 1238 - 1244
  • [32] Hybrid filter-wrapper feature selection for short-term load forecasting
    Hu, Zhongyi
    Bao, Yukun
    Xiong, Tao
    Chiong, Raymond
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2015, 40 : 17 - 27
  • [33] Variable Selection in the Kernel Regression Based Short-Term Load Forecasting Model
    Dudek, Grzegorz
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, PT II, 2012, 7268 : 557 - 563
  • [34] Short-term load forecasting based on strategies of daily load classification and feature set reconstruction
    Xu, Xianfeng
    Zhao, Yi
    Liu, Zhuangzhuang
    Lu, Yong
    Li, Longjie
    INTERNATIONAL TRANSACTIONS ON ELECTRICAL ENERGY SYSTEMS, 2021, 31 (12)
  • [35] Optimal Decomposition and Reconstruction of Discrete Wavelet Transformation for Short-Term Load Forecasting
    Aprillia, Happy
    Yang, Hong-Tzer
    Huang, Chao-Ming
    ENERGIES, 2019, 12 (24)
  • [36] Short-Term Load Forecasting using A Long Short-Term Memory Network
    Liu, Chang
    Jin, Zhijian
    Gu, Jie
    Qiu, Caiming
    2017 IEEE PES INNOVATIVE SMART GRID TECHNOLOGIES CONFERENCE EUROPE (ISGT-EUROPE), 2017,
  • [37] A Short-Term Load Forecasting Method Using Integrated CNN and LSTM Network
    Rafi, Shafiul Hasan
    Nahid-Al-Masood
    Deeba, Shohana Rahman
    Hossain, Eklas
    IEEE ACCESS, 2021, 9 : 32436 - 32448
  • [38] Improved short-term electricity load forecasting using extreme learning machines
    Prasad, Das Shom
    Laharika, Vidiyala
    Achray, N. Sangita
    PROCEEDINGS OF THE 2017 INTERNATIONAL CONFERENCE ON BIG DATA ANALYTICS AND COMPUTATIONAL INTELLIGENCE (ICBDAC), 2017, : 5 - 10
  • [39] Application of GMDH to Short-term Load Forecasting
    Xu, Hongya
    Dong, Yao
    Wu, Jie
    Zhao, Weigang
    2010 INTERNATIONAL COLLOQUIUM ON COMPUTING, COMMUNICATION, CONTROL, AND MANAGEMENT (CCCM2010), VOL III, 2010, : 338 - 341
  • [40] Short-Term Load Forecasting on Individual Consumers
    Jales Melo, Joao Victor
    Soares Lira, George Rossany
    Costa, Edson Guedes
    Leite Neto, Antonio F.
    Oliveira, Iago B.
    ENERGIES, 2022, 15 (16)