Automatic Selection of Temperature Variables for Short-Term Load Forecasting

被引:1
作者
Candela Esclapez, Alfredo [1 ]
Lopez Garcia, Miguel [1 ]
Valero Verdu, Sergio [1 ]
Senabre Blanes, Carolina [1 ]
机构
[1] Miguel Hernandez Univ, Elect Engn Dept, Av Univ, Elche 03202, Spain
关键词
accuracy; interpretability; short-term load forecasting; temperature analysis; temperature processing; NEURAL-NETWORK; MODEL;
D O I
10.3390/su142013339
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Due to the infeasibility of large-scale electrical energy storage, electricity is generated and consumed simultaneously. Therefore, electricity entities need consumption forecasting systems to plan operations and manage supplies. In addition, accurate predictions allow renewable energies on electrical grids to be managed, thereby reducing greenhouse gas emissions. Temperature affects electricity consumption through air conditioning and heating equipment, although it is the consumer's behavior that determines specifically to what extent. This work proposes an automatic method of processing and selecting variables, with a two-fold objective: improving both the accuracy and the interpretability of the overall forecasting system. The procedure has been tested by the predictive system of the Spanish electricity operator (Red Electrica de Espana) with regard to peninsular demand. During the test period, the forecasting error was consistently reduced for the forecasting horizon, with an improvement of 0.16% in MAPE and 59.71 MWh in RMSE. The new way of working with temperatures is interpretable, since they separate the effect of temperature according to location and time. It has been observed that heat has a greater influence than the cold. In addition, on hot days, the temperature of the second previous day has a greater influence than the previous one, while the opposite occurs on cold days.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Deep autoencoder with localized stochastic sensitivity for short-term load forecasting
    Wang, Ting
    Lai, Chun Sing
    Ng, Wing W. Y.
    Pan, Keda
    Zhang, Mingyang
    Vaccaro, Alfredo
    Lai, Loi Lei
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2021, 130
  • [22] ANN based Short-Term Load Curve Forecasting
    Chis, V
    Barbulescu, C.
    Kilyeni, S.
    Dzitac, S.
    INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, 2018, 13 (06) : 938 - 955
  • [23] Short-Term Load Forecasting of the Greek Electricity System
    Stamatellos, George
    Stamatelos, Tassos
    APPLIED SCIENCES-BASEL, 2023, 13 (04):
  • [24] Short-Term Load Forecasting With Deep Residual Networks
    Chen, Kunjin
    Chen, Kunlong
    Wang, Qin
    He, Ziyu
    Hu, Jun
    He, Jinliang
    IEEE TRANSACTIONS ON SMART GRID, 2019, 10 (04) : 3943 - 3952
  • [25] Ensemble Residual Networks for Short-Term Load Forecasting
    Xu, Qingshan
    Yang, Xiaohui
    Huang, Xin
    IEEE ACCESS, 2020, 8 (64750-64759) : 64750 - 64759
  • [26] Residual LSTM based short-term load forecasting
    Sheng, Ziyu
    An, Zeyu
    Wang, Huiwei
    Chen, Guo
    Tian, Kun
    APPLIED SOFT COMPUTING, 2023, 144
  • [27] A hierarchical neural model in short-term load forecasting
    Carpinteiro, OAS
    Reis, AJR
    da Silva, APA
    APPLIED SOFT COMPUTING, 2004, 4 (04) : 405 - 412
  • [28] Spatial-temporal learning structure for short-term load forecasting
    Ganjouri, Mahtab
    Moattari, Mazda
    Forouzantabar, Ahmad
    Azadi, Mohammad
    IET GENERATION TRANSMISSION & DISTRIBUTION, 2023, 17 (02) : 427 - 437
  • [29] Adaptive Clustering Long Short-Term Memory Network for Short-Term Power Load Forecasting
    Qi, Yuanhang
    Luo, Haoyu
    Luo, Yuhui
    Liao, Rixu
    Ye, Liwei
    ENERGIES, 2023, 16 (17)
  • [30] Development of short-term load forecasting algorithm using hourly temperature
    Song, K.-B. (kbsong@ssu.ac.kr), 1600, Korean Institute of Electrical Engineers (63): : 451 - 454