The numerical range of finite order elliptic automorphism composition operators

被引:2
作者
Heydari, M. T. [1 ]
Abdollahi, A. [2 ]
机构
[1] Univ Yasuj, Dept Math, Coll Sci, Yasuj 75914, Iran
[2] Shiraz Univ, Dept Math, Coll Sci, Shiraz 71454, Iran
关键词
Hardy space; Composition operator; Numerical range;
D O I
10.1016/j.laa.2015.05.023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider the following conjecture, posed by P.S. Bourdon and J.H. Shapiro in [2]: The numerical range of a finite order elliptic automorphism is not a disk, and we show that this is true for a large class of such composition operators. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:128 / 138
页数:11
相关论文
共 15 条
[1]   The numerical range of a composition operator with conformal automorphism symbol [J].
Abdollahi, A .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 408 (1-3) :177-188
[2]  
[Anonymous], 1974, Real and Complex Analysis
[3]  
[Anonymous], 1967, A Hilbert space problem book
[4]   The numerical ranges of automorphic composition operators [J].
Bourdon, PS ;
Shapiro, JH .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 251 (02) :839-854
[5]   When is zero in the numerical range of a composition operator? [J].
Bourdon, PS ;
Shapiro, JH .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2002, 44 (04) :410-441
[6]  
Cowen Jr Carl C., 2019, Composition operators on spaces of analytic functions
[7]  
Gustafon K. E., 1997, The numerical range, the field of values of linear Operators and Matrices
[8]  
Guyker J., 1989, ACTA SCI MATH SZEGED, V53, P369
[9]  
Horn R. A., 2012, Matrix Analysis
[10]   On inequalities in the theory of functions [J].
Littlewood, JE .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1925, 23 :481-519