Hidden chaotic attractors and chaos suppression in an impulsive discrete economical supply and demand dynamical system

被引:23
作者
Danca, Marius-F. [1 ,2 ]
Feckan, Michal [3 ,4 ]
机构
[1] Avram Iancu Univ Cluj Napoca, Dept Math & Comp Sci, Cluj Napoca, Romania
[2] Romanian Inst Sci & Tecchnol, Cluj Napoca, Romania
[3] Comenius Univ, Dept Math Anal & Numer Math, Fac Math Phys & Informat, Bratislava, Slovakia
[4] Slovak Acad Sci, Math Inst, Bratislava, Slovakia
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2019年 / 74卷
关键词
Supply and demand model; Chaos suppression; Difference equation with impulses; Coexisting attractors; Hidden chaotic attractors; Self-excited attractors; FRACTIONAL-ORDER; MULTISTABILITY; STABILIZATION; SELECTION; PULSES; MODELS; LASER;
D O I
10.1016/j.cnsns.2019.03.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Impulsive control is used to suppress the chaotic behavior in an one-dimensional discrete supply and demand dynamical system. By perturbing periodically the state variable with constant impulses, the chaos can be suppressed. It is proved analytically that the obtained orbits are bounded and periodic. Moreover, it is shown for the first time that the difference equations with impulses, used to control the chaos, can generate hidden chaotic attractors. To the best of the authorsknowledge, this interesting feature has not yet been discussed. The impulsive algorithm can be used to stabilize chaos in other classes of discrete dynamical systems. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 29 条
[21]  
Lauvdal T, 1997, IEEE DECIS CONTR P, P4004, DOI 10.1109/CDC.1997.652491
[22]   Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion [J].
Leonov, G. A. ;
Kuznetsov, N. V. ;
Mokaev, T. N. .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2015, 224 (08) :1421-1458
[23]   HIDDEN ATTRACTORS IN DYNAMICAL SYSTEMS. FROM HIDDEN OSCILLATIONS IN HILBERT-KOLMOGOROV, AIZERMAN, AND KALMAN PROBLEMS TO HIDDEN CHAOTIC ATTRACTOR IN CHUA CIRCUITS [J].
Leonov, G. A. ;
Kuznetsov, N. V. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2013, 23 (01)
[24]   Delay-dependent asymptotic stability for neural networks with time-varying delays [J].
Liao, Xiaofeng ;
Yang, Xiaofan ;
Zhang, Wei .
DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2006, 2006
[25]  
Lorenz H.W., 1993, NONLINEAR DYNAMICAL
[26]   STABILIZATION OF CHAOS BY PROPORTIONAL PULSES IN THE SYSTEM VARIABLES [J].
MATIAS, MA ;
GUEMEZ, J .
PHYSICAL REVIEW LETTERS, 1994, 72 (10) :1455-1458
[27]   Attractor selection in a modulated laser and in the Lorenz circuit [J].
Meucci, Riccardo ;
Salvadori, Francesco ;
Al Naimee, Kais ;
Brugioni, Stefano ;
Goswami, Binoy K. ;
Boccaletti, Stefano ;
Arecchi, F. Tito .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2008, 366 (1864) :475-486
[28]   Forecasting Models Selection Mechanism for Supply Chain Demand Estimation [J].
Pedro Sepulveda-Rojas, Juan ;
Rojas, Felipe ;
Valdes-Gonzalez, Hector ;
San Martin, Mario .
3RD INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND QUANTITATIVE MANAGEMENT, ITQM 2015, 2015, 55 :1060-1068
[29]   Generalized multistability in a fiber laser with modulated losses [J].
Saucedo-Solorio, JM ;
Pisarchik, AN ;
Kir'yanov, AV ;
Aboites, V .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2003, 20 (03) :490-496