Hidden chaotic attractors and chaos suppression in an impulsive discrete economical supply and demand dynamical system

被引:23
作者
Danca, Marius-F. [1 ,2 ]
Feckan, Michal [3 ,4 ]
机构
[1] Avram Iancu Univ Cluj Napoca, Dept Math & Comp Sci, Cluj Napoca, Romania
[2] Romanian Inst Sci & Tecchnol, Cluj Napoca, Romania
[3] Comenius Univ, Dept Math Anal & Numer Math, Fac Math Phys & Informat, Bratislava, Slovakia
[4] Slovak Acad Sci, Math Inst, Bratislava, Slovakia
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2019年 / 74卷
关键词
Supply and demand model; Chaos suppression; Difference equation with impulses; Coexisting attractors; Hidden chaotic attractors; Self-excited attractors; FRACTIONAL-ORDER; MULTISTABILITY; STABILIZATION; SELECTION; PULSES; MODELS; LASER;
D O I
10.1016/j.cnsns.2019.03.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Impulsive control is used to suppress the chaotic behavior in an one-dimensional discrete supply and demand dynamical system. By perturbing periodically the state variable with constant impulses, the chaos can be suppressed. It is proved analytically that the obtained orbits are bounded and periodic. Moreover, it is shown for the first time that the difference equations with impulses, used to control the chaos, can generate hidden chaotic attractors. To the best of the authorsknowledge, this interesting feature has not yet been discussed. The impulsive algorithm can be used to stabilize chaos in other classes of discrete dynamical systems. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 29 条
[1]  
Andrievsky BR, 2013, IFAC Proc, V46, P75
[2]   EXPERIMENTAL-EVIDENCE OF SUB-HARMONIC BIFURCATIONS, MULTISTABILITY, AND TURBULENCE IN A Q-SWITCHED GAS-LASER [J].
ARECCHI, FT ;
MEUCCI, R ;
PUCCIONI, G ;
TREDICCE, J .
PHYSICAL REVIEW LETTERS, 1982, 49 (17) :1217-1220
[3]   HOPPING MECHANISM GENERATING 1/F NOISE IN NON-LINEAR SYSTEMS - RESPONSE [J].
ARECCHI, FT ;
LISI, F .
PHYSICAL REVIEW LETTERS, 1983, 50 (17) :1330-1330
[4]   Supply chain design and analysis: Models and methods [J].
Beamon, BM .
INTERNATIONAL JOURNAL OF PRODUCTION ECONOMICS, 1998, 55 (03) :281-294
[5]  
Codreanu S., 1997, Polish Journal of Environmental Studies, V6, P21
[6]   Suppression of chaos in a one-dimensional mapping [J].
Codreanu, S ;
Danca, M .
JOURNAL OF BIOLOGICAL PHYSICS, 1997, 23 (01) :1-9
[7]   DIFFERENCE EQUATIONS WITH IMPULSES [J].
Danca, Marius ;
Feckan, Michal ;
Pospisil, Michal .
OPUSCULA MATHEMATICA, 2019, 39 (01) :5-22
[8]   Impulsive stabilization of chaos in fractional-order systems [J].
Danca, Marius-F. ;
Feckan, Michal ;
Chen, Guanrong .
NONLINEAR DYNAMICS, 2017, 89 (03) :1889-1903
[9]   Suppressing chaos in a simplest autonomous memristor-based circuit of fractional order by periodic impulses [J].
Danca, Marius-F. ;
Tang, Wallace K. S. ;
Chen, Guanrong .
CHAOS SOLITONS & FRACTALS, 2016, 84 :31-40
[10]   Suppressing chaos in fractional-order systems by periodic perturbations on system variables [J].
Danca, Marius-F. ;
Tang, Wallace K. S. ;
Wang, Qingyun ;
Chen, Guanrong .
EUROPEAN PHYSICAL JOURNAL B, 2013, 86 (03)