CARBON NANOTUBES AND CARBONIZED POLYANILINE NANOSTRUCTURES AS 3D MODIFIED ANODE FOR MICROBIAL FUEL CELLS

被引:0
作者
Iftimie, Sorina [1 ]
Bradu, Corina [2 ]
Dumitru, Anca [1 ]
机构
[1] Univ Bucharest, Fac Phys, Atomistilor 405 St,POB MG-11, Magurele 077125, Romania
[2] Univ Bucharest, Res Ctr Environm Protect & Waste Management, Bucharest, Romania
来源
PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE | 2019年 / 20卷 / 01期
关键词
microbial fuel cells; nitrogen-containing carbon nanostructures; carbon nanotubes; polarization curves; wastewater treatment; POWER PRODUCTION; PERFORMANCE; GRAPHENE;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper presents an approach of improving power generation of microbial fuel cells (MFCs) by using three dimensional (3D) anodes modified with commercial carbon nanotubes (CNTs) and nitrogen-containing carbon nanostructures derived from polyaniline (PANI) precursors. The materials used for anode modification were characterized using X-ray photoelectron spectroscopy (XPS), Raman Spectroscopy and Scanning Electron Microscopy (SEM). The power output, chemical oxygen demand (COD) and biological oxygen demand (BOD) of two-chamber MFCs with 3D modified anodes were compared. Results showed that the maximum power density of 3D anodes modified with nitrogen-containing carbon nanostructures could reach 17.8 mW/cm(2) compared with MFC anode modified with commercial CNTs. The inflow and outflow wastewater analysis show that both MFCs units lead to an improvement of wastewater quality with a better performance for the MFCs using 3D anode modified with nitrogen-containing carbon nanostructures.
引用
收藏
页码:45 / 50
页数:6
相关论文
共 25 条
[1]   Highly durable anodes of microbial fuel cells using a reduced graphene oxide/carbon nanotube-coated scaffold [J].
Chou, Hung-Tao ;
Lee, Hui-Ju ;
Lee, Chi-Young ;
Tai, Nyan-Hwa ;
Chang, Hwan-You .
BIORESOURCE TECHNOLOGY, 2014, 169 :532-536
[2]   Decorating anode with bamboo-like nitrogen-doped carbon nanotubes for microbial fuel cells [J].
Ci, Suqin ;
Wen, Zhenhai ;
Chen, Junhong ;
He, Zhen .
ELECTROCHEMISTRY COMMUNICATIONS, 2012, 14 (01) :71-74
[3]   Carbonised polyaniline and polypyrrole: towards advanced nitrogen-containing carbon materials [J].
Ciric-Marjanovic, Gordana ;
Pasti, Igor ;
Gavrilov, Nemanja ;
Janosevic, Aleksandra ;
Mentus, Slavko .
CHEMICAL PAPERS, 2013, 67 (08) :781-813
[4]  
Clesceri L. S., 1998, STANDARD METHODS EXA
[5]  
Dumitru A, 2018, ROM J PHYS, V63
[6]   Electrocatalysis of oxygen reduction reaction on polyaniline-derived nitrogen-doped carbon nanoparticle surfaces in alkaline media [J].
Gavrilov, Nemanja ;
Pasti, Igor A. ;
Mitric, Miodrag ;
Travas-Sejdic, Jadranka ;
Ciric-Marjanovic, Gordana ;
Mentus, Slavko V. .
JOURNAL OF POWER SOURCES, 2012, 220 :306-316
[7]   Micro-structural, electron-spectroscopic and field-emission studies of carbon nitride nanotubes grown from cage-like and linear carbon sources [J].
Ghosh, Kaushik ;
Kumar, Mukul ;
Maruyama, Takahiro ;
Ando, Yoshinori .
CARBON, 2009, 47 (06) :1565-1575
[8]   Architecture Engineering of Hierarchically Porous Chitosan/Vacuum-Stripped Graphene Scaffold as Bioanode for High Performance Microbial Fuel Cell [J].
He, Ziming ;
Liu, Jing ;
Qiao, Yan ;
Li, Chang Ming ;
Tan, Timothy Thatt Yang .
NANO LETTERS, 2012, 12 (09) :4738-4741
[9]   A new method for fabrication of graphene/polyaniline nanocomplex modified microbial fuel cell anodes [J].
Hou, Junxian ;
Liu, Zhongliang ;
Zhang, Peiyuan .
JOURNAL OF POWER SOURCES, 2013, 224 :139-144
[10]   Preparation of polyaniline nanotubes by a template-free self-assembly method [J].
Huang, Zhengzheng ;
Liu, Enhui ;
Shen, Haijie ;
Xiang, Xiaoxia ;
Tian, Yingying ;
Xiao, Chengyi ;
Mao, Zhaohui .
MATERIALS LETTERS, 2011, 65 (13) :2015-2018