QSRR Model for Predicting Retention Indices of Geraniol Chemotype ofThymus serpyllumEssential Oil

被引:9
作者
Acimovic, Milica [1 ]
Pezo, Lato [2 ]
Jeremic, Jovana Stankovic [3 ]
Cvetkovic, Mirjana [3 ]
Rat, Milica [4 ]
Cabarkapa, Ivana [5 ]
Tesevic, Vele [6 ]
机构
[1] Inst Field & Vegetable Crops Novi Sad, Novi Sad, Serbia
[2] Univ Belgrade, Inst Gen & Phys Chem, Belgrade, Serbia
[3] Univ Belgrade, Inst Chem Technol & Met, Belgrade, Serbia
[4] Univ Novi Sad, Fac Sci, Novi Sad, Serbia
[5] Univ Novi Sad, Inst Food Technol, Novi Sad, Serbia
[6] Univ Belgrade, Fac Chem, Belgrade, Serbia
关键词
coefficient of determination; geraniol; nerol; retention indices; CHEMICAL-COMPOSITION; QSAR; L;
D O I
10.1080/0972060X.2020.1790428
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
A total of 26 experimentally obtained retention indices on a logarithmic scale (log RI) fromThymus serpyllumessential oil were used to build a robust predictive model. The selected descriptors were used as inputs of an artificial neural network model to build a predictive quantitative structure-retention time relationship model. The coefficient of determination for the training cycle was 0.977, indicating that this model could be used for the prediction of retention indices forT. serpyllumessential oil compounds. These 26 compounds comprise about 99.8 % of the total oil, but among them only 6 compounds had the average relative concentration over 1 percent: geraniol (63.4 %), nerol (orcis-geraniol) (18.9 %), geranyl acetate (4.7 %),trans-caryophyllene (4.6 %), beta-bisabolene (2.0 %) and geranial (1.2 %). According to these results, it can be concluded thatT. serpyllumfrom village Sesalac (Serbia) belongs to geraniol chemotype, in total 82.3 % in both,transandcisforms (63.4 % and 18.9 %, respectively).
引用
收藏
页码:464 / 473
页数:10
相关论文
共 46 条
[31]   QSAR study of VEGFR-2 inhibitors by using genetic algorithm-multiple linear regressions (GA-MLR) and genetic algorithm-support vector machine (GA-SVM): a comparative approach [J].
Nekoei, Mehdi ;
Mohammadhosseini, Majid ;
Pourbasheer, Eslam .
MEDICINAL CHEMISTRY RESEARCH, 2015, 24 (07) :3037-3046
[32]   Prediction of antileukemia activity of berbamine derivatives by genetic algorithm-multiple linear regression [J].
Nekoei, Mehdi ;
Salimi, Mahmoud ;
Dolatabadi, Mohsen ;
Mohammadhosseini, Majid .
MONATSHEFTE FUR CHEMIE, 2011, 142 (09) :943-948
[33]   QUANTITATIVE STRUCTURE-RETENTION RELATIONSHIPS ANALYSIS OF RETENTION INDEX OF ESSENTIAL OILS [J].
Noorizadeh, Hadi ;
Farmany, Abbas ;
Noorizadeh, Mehrab .
QUIMICA NOVA, 2011, 34 (02) :242-249
[34]   Essential Oil Content and Constituents of Thymus x citriodorus L. at Different Phenological Stages [J].
Omidbaigi, R. ;
Fattahi, F. ;
Alirezalu, A. .
JOURNAL OF ESSENTIAL OIL BEARING PLANTS, 2009, 12 (03) :333-337
[35]   QSTR with extended topochemical atom indices. 2. Fish toxicity of substituted benzenes [J].
Roy, K ;
Ghosh, G .
JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 2004, 44 (02) :559-567
[36]  
Sarkic A., 2018, Cosmetics, V5, P11, DOI DOI 10.3390/COSMETICS5010011
[37]   Essential Oil Characterization of Thymus vulgaris from Various Geographical Locations [J].
Satyal, Prabodh ;
Murray, Brittney L. ;
McFeeters, Robert L. ;
Setzer, William N. .
FOODS, 2016, 5 (04) :1-12
[38]  
Todeschini R, 2009, Molecular descriptors for chemoinformatics, P27, DOI DOI 10.1002/9783527628766
[39]   Best Practices for QSAR Model Development, Validation, and Exploitation [J].
Tropsha, Alexander .
MOLECULAR INFORMATICS, 2010, 29 (6-7) :476-488
[40]   Current approaches and challenges for the metabolite profiling of complex natural extracts [J].
Wolfender, Jean-Luc ;
Marti, Guillaume ;
Thomas, Aurelien ;
Bertrand, Samuel .
JOURNAL OF CHROMATOGRAPHY A, 2015, 1382 :136-164