Force feedback exploiting tactile and proximal force/torque sensing

被引:56
作者
Fumagalli, Matteo [1 ,2 ,7 ]
Ivaldi, Serena [1 ,3 ]
Randazzo, Marco [1 ]
Natale, Lorenzo [1 ]
Metta, Giorgio [1 ,4 ,5 ,6 ]
Sandini, Giulio [1 ,4 ]
Nori, Francesco [1 ]
机构
[1] Ist Italiano Tecnol, Dept Robot Brain & Cognit Sci, I-16163 Genoa, Italy
[2] Univ Twente, Dept Control Engn, NL-7500 AE Enschede, Netherlands
[3] Univ Paris 06, Inst Syst Intelligents & Robot, Paris, France
[4] Univ Genoa, Dept Informat Syst & Commun DIST, Genoa, Italy
[5] Univ Genoa, Course Anthropomorph Robot, Genoa, Italy
[6] Univ Genoa, Course Intelligent Syst Bioengn Curricula, Genoa, Italy
[7] Univ Twente, Control Engn Grp, NL-7500 AE Enschede, Netherlands
关键词
Active force control; Proximal sensing; Multi-body dynamics; PRECISE CONTROL; JOINT-FRICTION; ROBOT; MANIPULATORS;
D O I
10.1007/s10514-012-9291-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The paper addresses the problem of measuring whole-body dynamics for a multiple-branch kinematic chain in presence of unknown external wrenches. The main result of the paper is to give a methodology for computing whole body dynamics by aligning a model of the system dynamics with the measurements coming from the available sensors. Three primary sources of information are exploited: (1) embedded force/torque sensors, (2) embedded inertial sensors, (3) distributed tactile sensors (i.e. artificial skin). In order to cope with external wrenches applied at continuously changing locations, we model the kinematic chain with a graph which dynamically adapts to the contact locations. Classical pre-order and post-order traversals of this dynamically evolving graph allow computing whole-body dynamics and estimate external wrenches. Theoretical results have been implemented in an open-source software library (iDyn) released under the iCub project. Experimental results on the iCub humanoid robot show the effectiveness of the proposed approach.
引用
收藏
页码:381 / 398
页数:18
相关论文
共 44 条
[1]  
[Anonymous], PERMIS
[2]  
[Anonymous], ADV TXB CONTROL SIGN
[3]  
Caccavale F, 2005, IEEE ROBOT AUTOM MAG, V12, P53, DOI 10.1109/MRA.2005.1511869
[4]  
Calinon S., 2010, IEEE RSJ INT C INT R
[5]   A survey of robot interaction control schemes with experimental comparison [J].
Chiaverini, S ;
Siciliano, B ;
Villani, L .
IEEE-ASME TRANSACTIONS ON MECHATRONICS, 1999, 4 (03) :273-285
[6]  
Cormen T.H., 2002, INTRO ALGORITHMS, V2nd
[7]  
De Luca A, 2006, 2006 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, VOLS 1-12, P1623
[8]   An atlas of physical human-robot interaction [J].
De Santis, Agostino ;
Siciliano, Bruno ;
De Luca, Alessandro ;
Bicchi, Antonio .
MECHANISM AND MACHINE THEORY, 2008, 43 (03) :253-270
[9]  
Degallier S., 2008, IEEE RAS EMBS INT C
[10]   On Joint Design with Intrinsic Variable Compliance: Derivation of the DLR QA-Joint [J].
Eiberger, Oliver ;
Haddadin, Sami ;
Weis, Michael ;
Albu-Schaeffer, Alin ;
Hirzinger, Gerd .
2010 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2010, :1687-1694