Unsupervised Domain Adaptation to Classify Medical Images Using Zero-Bias Convolutional Auto-Encoders and Context-Based Feature Augmentation

被引:43
作者
Ahn, Euijoon [1 ]
Kumar, Ashnil [1 ]
Fulham, Michael [2 ,3 ]
Feng, Dagan [1 ,4 ]
Kim, Jinman [1 ]
机构
[1] Univ Sydney, Sch Comp Sci, Sydney, NSW 2006, Australia
[2] Royal Prince Alfred Hosp, Dept Mol Imaging, Camperdown, NSW 2050, Australia
[3] Univ Sydney, Sydney Med Sch, Camperdown, NSW 2006, Australia
[4] Shanghai Jiao Tong Univ, MedX Res Inst, Shanghai 200240, Peoples R China
关键词
Biomedical imaging; Feature extraction; Training; Skin; Diseases; Training data; Convolutional auto-encoders; convolutional neural networks; unsupervised domain adaptation; unsupervised feature learning; NEURAL-NETWORKS; CLASSIFICATION; AUTOENCODERS; RETRIEVAL; ENSEMBLE;
D O I
10.1109/TMI.2020.2971258
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The accuracy and robustness of image classification with supervised deep learning are dependent on the availability of large-scale labelled training data. In medical imaging, these large labelled datasets are sparse, mainly related to the complexity in manual annotation. Deep convolutional neural networks (CNNs), with transferable knowledge, have been employed as a solution to limited annotated data through: 1) fine-tuning generic knowledge with a relatively smaller amount of labelled medical imaging data, and 2) learning image representation that is invariant to different domains. These approaches, however, are still reliant on labelled medical image data. Our aim is to use a new hierarchical unsupervised feature extractor to reduce reliance on annotated training data. Our unsupervised approach uses a multi-layer zero-bias convolutional auto-encoder that constrains the transformation of generic features from a pre-trained CNN (for natural images) to non-redundant and locally relevant features for the medical image data. We also propose a context-based feature augmentation scheme to improve the discriminative power of the feature representation. We evaluated our approach on 3 public medical image datasets and compared it to other state-of-the-art supervised CNNs. Our unsupervised approach achieved better accuracy when compared to other conventional unsupervised methods and baseline fine-tuned CNNs.
引用
收藏
页码:2385 / 2394
页数:10
相关论文
共 62 条
[1]  
Ahn E, 2019, I S BIOMED IMAGING, P1915, DOI [10.1109/ISBI.2019.8759275, 10.1109/isbi.2019.8759275]
[2]   Convolutional sparse kernel network for unsupervised medical image analysis [J].
Ahn, Euijoon ;
Kumar, Ashnil ;
Fulham, Michael ;
Feng, Dagan ;
Kim, Jinman .
MEDICAL IMAGE ANALYSIS, 2019, 56 :140-151
[3]   X-RAY IMAGE CLASSIFICATION USING DOMAIN TRANSFERRED CONVOLUTIONAL NEURAL NETWORKS AND LOCAL SPARSE SPATIAL PYRAMID [J].
Ahn, Euijoon ;
Kumar, Ashnil ;
Kim, Jinman ;
Li, Changyang ;
Feng, Dagan ;
Fulham, Michael .
2016 IEEE 13TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2016, :855-858
[4]  
Anavi Y, 2015, IEEE ENG MED BIO, P2940, DOI 10.1109/EMBC.2015.7319008
[5]  
[Anonymous], 2006, ADV NEURAL INFORM PR
[6]  
[Anonymous], P 16 INT WORKSH CELL
[7]  
[Anonymous], 2014, Comput. Sci.
[8]  
[Anonymous], CLEF WORKING NOTES
[9]  
[Anonymous], 2015, J MACH LEARN RES
[10]  
[Anonymous], 2016, Advances in Neural Information Processing Systems (NIPS)