The full-sky relativistic correlation function and power spectrum of galaxy number counts. Part I: theoretical aspects

被引:52
作者
Tansella, Vittorio [1 ]
Bonvin, Camille
Durrer, Ruth
Ghosh, Basundhara
Sellentin, Elena
机构
[1] Univ Geneva, Dept Phys Theor, 24 Quai Ansermet, CH-1211 Geneva 4, Switzerland
来源
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS | 2018年 / 03期
基金
瑞士国家科学基金会;
关键词
redshift surveys; power spectrum; OSCILLATION SPECTROSCOPIC SURVEY; REDSHIFT-SPACE DISTORTIONS; WIDE-ANGLE; GROWTH-RATE; VELOCITY;
D O I
10.1088/1475-7516/2018/03/019
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We derive an exact expression for the correlation function in redshift shells including all the relativistic contributions. This expression, winch does not rely on the distant observer or flat-sky approximation, is valid at all scales and includes both local relativistic corrections and integrated contributions, like gravitational lensing. We present two methods to calculate this correlation function, one which makes use of the angular power spectrum C-l(z(1), z(2)) and a second method which evades the costly calculations of the angular power spectra. The correlation function is then used to define the power spectrum as its Fourier transform. In this work theoretical aspects of this procedure are presented, together with quantitative examples. In particular, we show that gravitational lensing modifies the multi poles of the correlation function and of the power spectrum by a few percent at redshift z = 1 and by up to 30% and more at z = 2. We also point out that large-scale relativistic effects and wide-angle corrections generate contributions of the same order of magnitude and have consequently to be treated in conjunction. These corrections are particularly important at small redshift, z = 0.1, where they can reach 10%. This means in particular that a flat-sky treatment of relativistic effects, using for example the power spectrum, is not consistent.
引用
收藏
页数:49
相关论文
共 61 条
  • [1] Abate A., ARXIV12110310
  • [2] Abell P. A., ARXIV09120201
  • [3] Abramowitz M., 1970, HDB MATH FUNCTIONS
  • [4] Consistency of the growth rate in different environments with the 6-degree Field Galaxy Survey: Measurement of the void-galaxy and galaxy-galaxy correlation functions
    Achitouv, I.
    Blake, C.
    Carter, P.
    Koda, J.
    Beutler, F.
    [J]. PHYSICAL REVIEW D, 2017, 95 (08)
  • [5] Improving constraints on the growth rate of structure by modelling the density-velocity cross-correlation in the 6dF Galaxy Survey
    Adams, Caitlin
    Blake, Chris
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 471 (01) : 839 - 856
  • [6] Aghamousa A., ARXIV161100036
  • [7] The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample
    Alam, Shadab
    Ata, Metin
    Bailey, Stephen
    Beutler, Florian
    Bizyaev, Dmitry
    Blazek, Jonathan A.
    Bolton, Adam S.
    Brownstein, Joel R.
    Burden, Angela
    Chuang, Chia-Hsun
    Comparat, Johan
    Cuesta, Antonio J.
    Dawson, Kyle S.
    Eisenstein, Daniel J.
    Escoffier, Stephanie
    Gil-Marin, Hector
    Grieb, Jan Niklas
    Hand, Nick
    Ho, Shirley
    Kinemuchi, Karen
    Kirkby, David
    Kitaura, Francisco
    Malanushenko, Elena
    Malanushenko, Viktor
    Maraston, Claudia
    McBride, Cameron K.
    Nichol, Robert C.
    Olmstead, Matthew D.
    Oravetz, Daniel
    Padmanabhan, Nikhil
    Palanque-Delabrouille, Nathalie
    Pan, Kaike
    Pellejero-Ibanez, Marcos
    Percival, Will J.
    Petitjean, Patrick
    Prada, Francisco
    Price-Whelan, Adrian M.
    Reid, Beth A.
    Rodriguez-Torres, Sergio A.
    Roe, Natalie A.
    Ross, Ashley J.
    Ross, Nicholas P.
    Rossi, Graziano
    Alberto Rubino-Martin, Jose
    Saito, Shun
    Salazar-Albornoz, Salvador
    Samushia, Lado
    Sanchez, Ariel G.
    Satpathy, Siddharth
    Schlegel, David J.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 470 (03) : 2617 - 2652
  • [8] Amendola L., ARXIV160600180
  • [9] [Anonymous], ARXIV11103193
  • [10] Arfken G.B., 2001, Mathematical methods for physicists