Homoclinic solutions for nonautonomous second-order Hamiltonian systems with a coercive potential

被引:69
作者
Tang, X. H. [1 ]
Xiao, Li [1 ]
机构
[1] Cent S Univ, Sch Math Sci & Comp Technol, Changsha 410083, Hunan, Peoples R China
关键词
Homoclinic solutions; Hamiltonian systems; Coercive potential; ORBITS; EXISTENCE;
D O I
10.1016/j.jmaa.2008.10.038
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new existence result of homoclinic orbits is obtained for the second-order Hamiltonian systems u(t) = del F(t, u (t)) + f(t), where F(t, x) is periodic with respect to t. This result generalizes some known results in the literature. (c) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:586 / 594
页数:9
相关论文
共 15 条
[1]  
Ambrosetti A., 1993, REND SEMIN MAT U PAD, V89, P177, DOI DOI 10.1016/0165-0114(92)90069-G
[2]  
[Anonymous], 1989, DIRECT METHODS CALCU
[3]  
[Anonymous], 1989, APPL MATH SCI
[4]   Existence of homoclinic solutions for a class of time-dependent Hamiltonian systems [J].
Carriao, PC ;
Miyagaki, OH .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 230 (01) :157-172
[5]  
Coti-Zelati V, 1991, J AM MATH SOC, V4, P693
[6]  
Ding Y., 1993, DYNAM SYST APPL, V2, P131
[7]   HOMOCLINIC ORBITS FOR FIRST-ORDER HAMILTONIAN-SYSTEMS [J].
DING, YH ;
LI, SJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1995, 189 (02) :585-601
[8]   Homoclinic solutions for a class of the second order Hamiltonian systems [J].
Izydorek, M ;
Janczewska, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 219 (02) :375-389
[9]   Homoclinic solutions for nonautonomous second order Hamiltonian systems with a coercive potential [J].
Izydorek, Marek ;
Janczewska, Joanna .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 335 (02) :1119-1127
[10]   HOMOCLINIC ORBITS FOR A CLASS OF HAMILTONIAN-SYSTEMS [J].
RABINOWITZ, PH .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1990, 114 :33-38