Frobenius functors and Gorenstein homological properties

被引:11
作者
Chen, Xiao-Wu [1 ]
Ren, Wei [2 ]
机构
[1] Chinese Acad Sci, Univ Sci & Technol China, Sch Math Sci, Key Lab Wu Wen Tsun Math, Hefei 230026, Anhui, Peoples R China
[2] Chongqing Normal Univ, Sch Math Sci, Chongqing 401331, Peoples R China
基金
中国国家自然科学基金;
关键词
Frobenius functor; Gorenstein projective object; Gorenstein global dimension; STABLE EQUIVALENCES; CATEGORIES; DIMENSIONS;
D O I
10.1016/j.jalgebra.2022.06.030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that any faithful Frobenius functor between abelian categories preserves the Gorenstein projective dimension of objects. Consequently, it preserves and reflects Gorenstein projective objects. We give conditions on when a Frobenius functor preserves the stable categories of Gorenstein projective objects, the singularity categories and the Gorenstein defect categories, respectively. In the appendix, we give a direct proof of the following known result: for an abelian category with enough projectives and injectives, its global Gorenstein projective dimension coincides with its global Gorenstein injective dimension.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:18 / 37
页数:20
相关论文
共 38 条
  • [11] A note on stable equivalences of Morita type
    Dugas, Alex S.
    Martinez-Villa, Roberto
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2007, 208 (02) : 421 - 433
  • [12] On the finiteness of Gorenstein homological dimensions
    Emmanouil, Ioannis
    [J]. JOURNAL OF ALGEBRA, 2012, 372 : 376 - 396
  • [13] Enochs E E., 2000, RELATIVE HOMOLOGICAL, V30, DOI [10.1515/9783110803662, DOI 10.1515/9783110803662]
  • [14] COMPLETE COHOMOLOGICAL FUNCTORS ON GROUPS
    GEDRICH, TV
    GRUENBERG, KW
    [J]. TOPOLOGY AND ITS APPLICATIONS, 1987, 25 (02) : 203 - 223
  • [15] Happel D., 1988, Mathematical Society Lecture Notes Series, V119
  • [16] Gorenstein homological dimensions
    Holm, H
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2004, 189 (1-3) : 167 - 193
  • [17] Rings with finite Gorenstein injective dimension
    Holm, H
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (05) : 1279 - 1283
  • [18] [Hu Jiangsheng 胡江胜], 2022, [数学进展, Advances in Mathematics (China)], V51, P687
  • [19] Frobenius functors and Gorenstein flat dimensions
    Hu, Jiangsheng
    Li, Huanhuan
    Geng, Yuxian
    Zhang, Dongdong
    [J]. COMMUNICATIONS IN ALGEBRA, 2020, 48 (03) : 1257 - 1265
  • [20] Frobenius functors: Applications
    Iglesias, FC
    Torrecillas, JG
    Nastasescu, C
    [J]. COMMUNICATIONS IN ALGEBRA, 1999, 27 (10) : 4879 - 4900