Cell Viability of Porous Poly(d,l-lactic acid)/Vertically Aligned Carbon Nanotubes/Nanohydroxyapatite Scaffolds for Osteochondral Tissue Engineering

被引:12
作者
Stocco, Thiago Domingues [1 ,2 ]
Antonioli, Eliane [3 ]
Vaz Elias, Conceicao de Maria [4 ]
Manzolli Rodrigues, Bruno Vinicius [4 ]
Waltrick de Brito Siqueira, Idalia Aparecida [5 ]
Ferretti, Mario [3 ]
Marciano, Fernanda Roberta [4 ]
Lobo, Anderson Oliveira [6 ]
机构
[1] Univ Estadual Campinas, Fac Med Sci, BR-13083887 Sao Paulo, Brazil
[2] Univ Santo Amaro, Fac Physiotherapy, BR-04829300 Sao Paulo, Brazil
[3] Hosp Israelita Albert Einstein, BR-05652000 Sao Paulo, Brazil
[4] Brasil Univ, Sci & Technol Inst, BR-08230030 Sao Paulo, Brazil
[5] Univ Fed Sao Paulo, Inst Sci & Technol, BR-12231280 Sao Paulo, Brazil
[6] UFPI Fed Univ Piaui, LIMAV Interdisciplinary Lab Adv Mat, BR-64049550 Teresina, Piaui, Brazil
关键词
osteochondral regeneration; nanocomposites; porous scaffolds; carbon nanotubes; PDLLA; hydroxyapatite; chondrocyte; IN-VITRO; STEM-CELLS; COMPOSITE SCAFFOLDS; ARTICULAR-CARTILAGE; CURRENT STRATEGIES; GENE-EXPRESSION; PORE-SIZE; BONE; CHONDROCYTES; HYDROXYAPATITE;
D O I
10.3390/ma12060849
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Treatment of articular cartilage lesions remains an important challenge. Frequently the bone located below the cartilage is also damaged, resulting in defects known as osteochondral lesions. Tissue engineering has emerged as a potential approach to treat cartilage and osteochondral defects. The principal challenge of osteochondral tissue engineering is to create a scaffold with potential to regenerate both cartilage and the subchondral bone involved, considering the intrinsic properties of each tissue. Recent nanocomposites based on the incorporation of nanoscale fillers into polymer matrix have shown promising results for the treatment of osteochondral defects. In this present study, it was performed using the recently developed methodologies (electrodeposition and immersion in simulated body fluid) to obtain porous superhydrophilic poly(d,l-lactic acid)/vertically aligned carbon nanotubes/nanohydroxyapatite (PDLLA/VACNT-O:nHAp) nanocomposite scaffolds, to analyze cell behavior and gene expression of chondrocytes, and then assess the applicability of this nanobiomaterial for osteochondral regenerative medicine. The results demonstrate that PDLLA/VACNT-O:nHAp nanocomposite supports chondrocytes adhesion and decreases type I Collagen mRNA expression. Therefore, these findings suggest the possibility of novel nanobiomaterial as a scaffold for osteochondral tissue engineering applications.
引用
收藏
页数:13
相关论文
共 67 条
[11]   Engineering cartilage tissue [J].
Chung, Cindy ;
Burdick, Jason. A. .
ADVANCED DRUG DELIVERY REVIEWS, 2008, 60 (02) :243-262
[12]  
Cibere J, 2005, J RHEUMATOL, V32, P896
[13]   Facial Bone Reconstruction Using both Marine or Non-Marine Bone Substitutes: Evaluation of Current Outcomes in a Systematic Literature Review [J].
Cicciu, Marco ;
Cervino, Gabriele ;
Herford, Alan Scott ;
Fama, Fausto ;
Bramanti, Ennio ;
Fiorillo, Luca ;
Lauritano, Floriana ;
Sambataro, Sergio ;
Troiano, Giuseppe ;
Laino, Luigi .
MARINE DRUGS, 2018, 16 (01)
[14]   Real Opportunity for the Present and a Forward Step for the Future of Bone Tissue Engineering [J].
Cicciu, Marco .
JOURNAL OF CRANIOFACIAL SURGERY, 2017, 28 (03) :592-593
[15]   Designing a novel nanocomposite for bone tissue engineering using electrospun conductive PBAT/polypyrrole as a scaffold to direct nanohydroxyapatite electrodeposition [J].
de Castro, Jucara G. ;
Rodrigues, Bruno V. M. ;
Ricci, Ritchelli ;
Costa, Maira M. ;
Ribeiro, Andre F. C. ;
Marciano, Fernanda R. ;
Lobo, Anderson O. .
RSC ADVANCES, 2016, 6 (39) :32615-32623
[16]   Commentary: Bioceramics and Scaffolds: a Winning Combination for Tissue Engineering [J].
Denes, Eric ;
Barriere, Guislaine ;
Poli, Evelyne ;
Leveque, Guillaume .
FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2017, 5
[17]   Biomimetic hydroxyapatite coating on pore walls improves osteointegration of poly(L-lactic acid) scaffolds [J].
Deplaine, H. ;
Lebourg, M. ;
Ripalda, P. ;
Vidaurre, A. ;
Sanz-Ramos, P. ;
Mora, G. ;
Prosper, F. ;
Ochoa, I. ;
Doblare, M. ;
Gomez Ribelles, J. L. ;
Izal-Azcarate, I. ;
Gallego Ferrer, G. .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2013, 101B (01) :173-186
[18]   Surface energy and stiffness discrete gradients in additive manufactured scaffolds for osteochondral regeneration [J].
Di Luca, Andrea ;
Longoni, Alessia ;
Criscenti, Giuseppe ;
Lorenzo-Moldero, Ivan ;
Klein-Gunnewiek, Michel ;
Vancso, Julius ;
van Blitterswijk, Clemens ;
Mota, Carlos ;
Moroni, Lorenzo .
BIOFABRICATION, 2016, 8 (01)
[19]   Surface treatments of polymers for biocompatibility [J].
Elbert, DL ;
Hubbell, JA .
ANNUAL REVIEW OF MATERIALS SCIENCE, 1996, 26 :365-394
[20]   High Failure Rate of a Decellularized Osteochondral Allograft for the Treatment of Cartilage Lesions [J].
Farr, Jack ;
Gracitelli, Guilherme C. ;
Shah, Nehal ;
Chang, Eric Y. ;
Gomoll, Andreas H. .
AMERICAN JOURNAL OF SPORTS MEDICINE, 2016, 44 (08) :2015-2022