Construction of differential equations using quasi-elliptic functions

被引:1
作者
Kaplan, A [1 ]
机构
[1] Ataturk Univ, Kazim Karabekir Educ Fac, Dept Math, TR-25240 Erzurum, Turkey
关键词
D O I
10.1016/S0096-3003(03)00555-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, by considering the series of the four fundamental theta functions and Dedekind's n-function, the function Phi(z,tau) having the similar properties of both of these is defined. Furthermore it has been shown that the function 'P satisfies the partial differential equation (5). (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:195 / 198
页数:4
相关论文
共 50 条
[31]   CHOW MOTIVES OF QUASI-ELLIPTIC SURFACES [J].
Kawabe, Daiki .
OSAKA JOURNAL OF MATHEMATICS, 2024, 61 (04) :559-567
[32]   SOLUTION OF A QUASI-ELLIPTIC EQUATION IN A SEMISPACE [J].
PINI, B .
ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI RENDICONTI-CLASSE DI SCIENZE FISICHE-MATEMATICHE & NATURALI, 1967, 43 (05) :307-&
[33]   ON THE WEIGHTED SOBOLEV SPACES AND INTEGRAL-OPERATORS DEFINED BY QUASI-ELLIPTIC EQUATIONS [J].
DEMIDENKO, GV .
DOKLADY AKADEMII NAUK, 1994, 334 (04) :420-423
[34]   BOUNDARY VALUE PROBLEMS FOR QUASI-ELLIPTIC EQUATIONS IN NON-CYLINDRIC REGIONS [J].
FEIGIN, VI .
DOKLADY AKADEMII NAUK SSSR, 1971, 197 (05) :1034-&
[35]   Regularity for Quasi-Elliptic Pseudo-Differential Operators with Symbols in Holder Classes [J].
Garello, Gianluca ;
Morando, Alessandro .
NEW DEVELOPMENTS IN PSEUDO-DIFFERENTIAL OPERATORS, 2009, 189 :247-+
[36]   Reentrant wideband quasi-elliptic bandpass filter [J].
Atuchin, V. V. ;
Gorbachev, A. P. ;
Khrustalev, V. A. ;
Tarasenko, N. V. .
JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 2019, 33 (03) :320-334
[37]   QUASI-ELLIPTIC LOW-PASS FILTERS [J].
BISCHOF, S .
HEWLETT-PACKARD JOURNAL, 1991, 42 (02) :44-45
[38]   Quasi-elliptic cohomology and its power operations [J].
Huan, Zhen .
JOURNAL OF HOMOTOPY AND RELATED STRUCTURES, 2018, 13 (04) :715-767
[39]   Frequency-Tunable Quasi-Elliptic Filter Using Liquid Metal [J].
Brown, Matthew ;
Saavedra, Carlos E. .
APCCAS 2020: PROCEEDINGS OF THE 2020 IEEE ASIA PACIFIC CONFERENCE ON CIRCUITS AND SYSTEMS (APCCAS 2020), 2020, :110-113
[40]   Fujita's conjecture for quasi-elliptic surfaces [J].
Chen, Yen-An .
MATHEMATISCHE NACHRICHTEN, 2021, 294 (11) :2096-2104