A series formula for inversion of the V-line Radon transform in a disc

被引:28
作者
Ambartsoumian, Gaik [1 ]
Moon, Sunghwan [2 ]
机构
[1] Univ Texas Arlington, Dept Math, Arlington, TX 76019 USA
[2] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
基金
美国国家科学基金会;
关键词
Radon; V-line; Broken-ray; Transform; Inversion; Series; RECONSTRUCTION;
D O I
10.1016/j.camwa.2013.01.039
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper presents an exact formula for a Fourier series reconstruction of a function from its V-line Radon transform in a disc. This transform (often also called broken-ray Radon transform) appears in mathematical models of several imaging modalities, e.g. single-scattering optical tomography and gamma-ray emission tomography. Our inversion formula relaxes the support restriction on the image function required in the previously discovered inversion technique (Ambartsoumian, 2012) [8], and uses data from only half of the set of broken rays required before. The general strategy of the current approach was outlined in (Ambartsoumian, 2012) [8]. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1567 / 1572
页数:6
相关论文
共 18 条
[1]  
Allmaras M., INVERSE PRO IN PRESS
[2]   Inversion of the V-line Radon transform in a disc and its applications in imaging [J].
Ambartsoumian, Gaik .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 64 (03) :260-265
[3]   Inversion of the circular Radon transform on an annulus [J].
Ambartsoumian, Gaik ;
Gouia-Zarrad, Rim ;
Lewis, Matthew A. .
INVERSE PROBLEMS, 2010, 26 (10)
[4]  
[Anonymous], 1939, INTRO THEORY FOURIER
[5]   Analytical reconstruction formula for one-dimensional Compton camera [J].
Basko, R ;
Zeng, GL ;
Gullberg, GT .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 1997, 44 (03) :1342-1346
[6]   MELLIN TRANSFORMS AND ASYMPTOTICS - HARMONIC SUMS [J].
FLAJOLET, P ;
GOURDON, X ;
DUMAS, P .
THEORETICAL COMPUTER SCIENCE, 1995, 144 (1-2) :3-58
[7]   Inversion formulas for the broken-ray Radon transform [J].
Florescu, Lucia ;
Markel, Vadim A. ;
Schotland, John C. .
INVERSE PROBLEMS, 2011, 27 (02)
[8]   Single-scattering optical tomography: Simultaneous reconstruction of scattering and absorption [J].
Florescu, Lucia ;
Markel, Vadim A. ;
Schotland, John C. .
PHYSICAL REVIEW E, 2010, 81 (01)
[9]   Single-scattering optical tomography [J].
Florescu, Lucia ;
Schotland, John C. ;
Markel, Vadim A. .
PHYSICAL REVIEW E, 2009, 79 (03)
[10]   THEORY OF CIRCULAR HARMONIC IMAGE-RECONSTRUCTION [J].
HANSEN, EW .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1981, 71 (03) :304-308