CABARET method on unstructured hexahedral grids for jet noise computation

被引:46
作者
Faranosov, Georgy A. [1 ]
Goloviznin, Vasily M. [2 ]
Karabasov, Sergey A. [3 ]
Kondakov, Vasily G. [2 ]
Kopiev, Victor F. [1 ]
Zaitsev, Mihail A. [2 ]
机构
[1] Cent Aerohydrodynam Inst, TsAGI, Moscow, Russia
[2] Moscow Inst Nucl Safety, Moscow, Russia
[3] QMUL, Sch Mat Sci & Engn, London E1 4NS, England
基金
英国工程与自然科学研究理事会; 俄罗斯基础研究基金会;
关键词
Computational fluid dynamics and aeroacoustics; Jet noise; High-resolution schemes; Large eddy simulation; BOUNDARY-CONDITIONS; NONLINEAR PROBLEMS; SOUND GENERATION; AEROACOUSTICS;
D O I
10.1016/j.compfluid.2013.08.011
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A new scalable high-resolution CABARET MILES method coupled with a porous Ffowcs Williams-Hawking formulation for far-field noise modelling is applied for the computation of flow and noise from a high-speed turbulent jet, which corresponds to a converging axi-symmetric nozzle and static isothermal conditions of the Jet Exhaust Aerodynamics and Noise experiment. Computational simulation results are provided for a range of grid resolutions. The results for simple means, turbulent kinetic energy, and fourth-order velocity correlations are compared with the experimental data and with a reference LES-Smagorinsky calculation from the literature. Far-field-noise predictions are obtained based on several integral control surfaces, which are used for consistency of the model. The far-field noise spectra are also compared with the experiment. The directivity of the far field noise predicted is analysed with the Azimuthal Decomposition Technique and compared with jet noise data from the TsAGI experimental database. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:165 / 179
页数:15
相关论文
共 43 条
[1]   EXPERIMENTAL AND THEORETICAL INVESTIGATION OF BACKWARD-FACING STEP FLOW [J].
ARMALY, BF ;
DURST, F ;
PEREIRA, JCF ;
SCHONUNG, B .
JOURNAL OF FLUID MECHANICS, 1983, 127 (FEB) :473-496
[2]   On latency of multiple zonal jets in the oceans [J].
Berloff, P. ;
Karabasov, S. ;
Farrar, J. T. ;
Kamenkovich, I. .
JOURNAL OF FLUID MECHANICS, 2011, 686 :534-567
[3]  
Birch S., 2006, 12 AIAA CEAS AER C
[4]   Influence of nozzle-exit boundary-layer conditions on the flow and acoustic fields of initially laminar jets [J].
Bogey, C. ;
Bailly, C. .
JOURNAL OF FLUID MECHANICS, 2010, 663 :507-538
[5]   Computational aeroacoustics: progress on nonlinear problems of sound generation [J].
Colonius, T ;
Lele, SK .
PROGRESS IN AEROSPACE SCIENCES, 2004, 40 (06) :345-416
[6]   A new boundary integral formulation for the prediction of sound radiation [J].
DiFrancescantonio, P .
JOURNAL OF SOUND AND VIBRATION, 1997, 202 (04) :491-509
[7]   Large Eddy simulation of high-Reynolds-number free and wall-bounded flows [J].
Fureby, C ;
Grinstein, FF .
JOURNAL OF COMPUTATIONAL PHYSICS, 2002, 181 (01) :68-97
[8]   A generalized acoustic analogy [J].
Goldstein, ME .
JOURNAL OF FLUID MECHANICS, 2003, 488 :315-333
[9]  
Goloviznin VasiliiMikhailovich., 1998, Matematicheskoe Modelirovanie, V10, P86
[10]   A novel computational method for modelling stochastic advection in heterogeneous media [J].
Goloviznin, Vasilly M. ;
Semenov, Vladimir N. ;
Korotkin, Ivan A. ;
Karabasov, Sergey A. .
TRANSPORT IN POROUS MEDIA, 2007, 66 (03) :439-456