A new family of mixed finite elements for the linear elastodynamic problem

被引:75
作者
Bécache, E [1 ]
Joly, P [1 ]
Tsogka, C [1 ]
机构
[1] Inst Natl Rech Informat & Automat, F-78153 Le Chesnay, France
关键词
mixed finite elements; mass lumping; elastodynamics;
D O I
10.1137/S0036142999359189
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct and analyze a new family of quadrangular (in two dimensions) or cubic (in three dimensions) mixed finite elements for the approximation of elastic wave equations. Our elements lead to explicit schemes (via mass lumping), after time discretization, including in the case of anisotropic media. Error estimates are given for these new elements.
引用
收藏
页码:2109 / 2132
页数:24
相关论文
共 28 条
[1]   EQUILIBRIUM FINITE-ELEMENTS FOR THE LINEAR ELASTIC PROBLEM [J].
AMARA, M ;
THOMAS, JM .
NUMERISCHE MATHEMATIK, 1979, 33 (04) :367-383
[2]  
[Anonymous], ACOUSTIC FIELDS ELAS
[3]  
[Anonymous], ACOUSTIC FIELDS ELAS
[4]  
[Anonymous], METHODS NUMERICAL IN
[5]  
Arnold D., 1984, Jpn. J. Appl. Math., V1, P347, DOI [/10.1007/BF03167064, DOI 10.1007/BF03167064]
[6]   FINITE-ELEMENT METHOD WITH LAGRANGIAN MULTIPLIERS [J].
BABUSKA, I .
NUMERISCHE MATHEMATIK, 1973, 20 (03) :179-192
[7]   EFFECT OF QUADRATURE ERRORS ON FINITE-ELEMENT APPROXIMATIONS FOR 2ND ORDER HYPERBOLIC EQUATIONS [J].
BAKER, GA ;
DOUGALIS, VA .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1976, 13 (04) :577-598
[8]   Fictitious domains, mixed finite elements and perfectly matched layers for 2-D elastic wave propagation [J].
Bécache, E ;
Joly, P ;
Tsogka, C .
JOURNAL OF COMPUTATIONAL ACOUSTICS, 2001, 9 (03) :1175-1201
[9]   An analysis of new mixed finite elements for the approximation of wave propagation problems [J].
Bécache, E ;
Joly, P ;
Tsogka, C .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 37 (04) :1053-1084
[10]   Mixed finite elements and mass lumping for linear elastodynamics .1. Construction [J].
Becache, E ;
Joly, P ;
Tsogka, C .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 325 (05) :545-550