Anticipating stochastic Volterra equations

被引:16
作者
Alos, E [1 ]
Nualart, D [1 ]
机构
[1] UNIV BARCELONA,FAC MATEMAT,E-08007 BARCELONA,SPAIN
关键词
D O I
10.1016/S0304-4149(97)00075-6
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we establish the existence and uniqueness of a solution for stochastic Volterra equations assuming that the coefficients F(t,s,x) and G(i)(t,s,x) are F-t-measurable, for s less than or equal to t, where {F-t} denotes the filtration generated by the driving Brownian motion. we Impose some differentiability assumptions on the coefficients, in the sense of the Malliavin calculus, in the time interval [s, t]. Some properties of the solution are discussed. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:73 / 95
页数:23
相关论文
共 13 条
[1]  
[Anonymous], P INT S STOCH DIFF E
[2]  
Berger M., 1980, J. Integral Equ, V2, P319
[3]  
Berger M. A., 1980, I. J. Integral Equations, V2, P187
[4]   AN EXTENSION OF THE STOCHASTIC INTEGRAL [J].
BERGER, MA ;
MIZEL, VJ .
ANNALS OF PROBABILITY, 1982, 10 (02) :435-450
[5]   THE STOCHASTIC INTEGRAL AS A DIVERGENCE OPERATOR IN FUNCTIONAL SPACE [J].
GAVEAU, B ;
TRAUBER, P .
JOURNAL OF FUNCTIONAL ANALYSIS, 1982, 46 (02) :230-238
[6]  
HU Y, 1997, IN PRESS STAT PROBAB
[7]  
JOLIS M, 1992, STOCHASTICS STOCHAST, V41, P163
[8]   STOCHASTIC CALCULUS WITH ANTICIPATING INTEGRANDS [J].
NUALART, D ;
PARDOUX, E .
PROBABILITY THEORY AND RELATED FIELDS, 1988, 78 (04) :535-581
[9]  
Nualart D., 1996, MALLIAVIN CALCULUS R, V71, P168
[10]  
OCONE D, 1989, ANN I H POINCARE-PR, V25, P39