Interactive Visual Exploration of 3D Mass Spectrometry Imaging Data Using Hierarchical Stochastic Neighbor Embedding Reveals Spatiomolecular Structures at Full Data Resolution

被引:34
作者
Abdelmoula, Walid M. [1 ,2 ]
Pezzotti, Nicola [5 ]
Holt, Thomas [3 ,5 ]
Dijkstra, Jouke [1 ]
Vilanova, Anna [5 ]
McDonnell, Liam A. [4 ,6 ]
Lelieveldt, Boudewijn P. F. [1 ,5 ]
机构
[1] Leiden Univ, Med Ctr, Dept Radiol, Div Image Proc, NL-2333 Leiden, Netherlands
[2] Harvard Med Sch, Brigham & Womens Hosp, Dept Neurosurg, Boston, MA 02115 USA
[3] Leiden Univ, Med Ctr, Computat Biol Ctr, NL-2333 ZA Leiden, Netherlands
[4] Leiden Univ, Med Ctr, Ctr Prote & Metabol, NL-2333 ZA Leiden, Netherlands
[5] Delft Univ Technol, Fac EEMCS, Comp Graph & Visualizat Grp, NL-2628 CN Delft, Netherlands
[6] Fdn Pisana Sci ONLUS, I-56121 Pisa, Italy
关键词
3D MSI; data analysis; segmentation; proteomics; nonlinear dimensionality reduction; t-SNE; HSNE; GENE-EXPRESSION; T-SNE; MALDI; TISSUE; PROTEINS; REGISTRATION; PEPTIDES; BRAIN; RECONSTRUCTION; VISUALIZATION;
D O I
10.1021/acs.jproteome.7b00725
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Technological advances in mass spectrometry imaging (MSI) have contributed to growing interest in 3D MSI. However, the large size of 3D MSI data sets has made their efficient analysis and visualization and the identification of informative molecular patterns computationally challenging. Hierarchical stochastic neighbor embedding (HSNE), a nonlinear dimensionality reduction technique that aims at finding hierarchical and multiscale representations of large data sets, is a recent development that enables the analysis of millions of data points, with manageable time and memory complexities. We demonstrate that HSNE can be used to analyze large 3D MSI data sets at full mass spectral and spatial resolution. To benchmark the technique as well as demonstrate its broad applicability, we have analyzed a number of publicly available 3D MSI data sets, recorded from various biological systems and spanning different mass-spectrometry ionization techniques. We demonstrate that HSNE is able to rapidly identify regions of interest within these large high-dimensionality data sets as well as aid the identification of molecular ions that characterize these regions of interest; furthermore, through clearly separating measurement artifacts, the HSNE analysis exhibits a degree of robustness to measurement batch effects, spatially correlated noise, and mass spectral misalignment.
引用
收藏
页码:1054 / 1064
页数:11
相关论文
共 62 条
[1]   Data-driven identification of prognostic tumor subpopulations using spatially mapped t-SNE of mass spectrometry imaging data [J].
Abdelmoula, Walid M. ;
Balluff, Benjamin ;
Englert, Sonja ;
Dijkstra, Jouke ;
Reinders, Marcel J. T. ;
Walch, Axel ;
McDonnell, Liam A. ;
Lelieveldt, Boudewijn P. F. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (43) :12244-12249
[2]   Automatic Generic Registration of Mass Spectrometry Imaging Data to Histology Using Nonlinear Stochastic Embedding [J].
Abdelmoula, Walid M. ;
Skraskova, Karolina ;
Balluff, Benjamin ;
Carreira, Ricardo J. ;
Tolner, Else A. ;
Lelieveldt, Boudewijn P. F. ;
van der Maaten, Laurens ;
Morreau, Hans ;
van den Maagdenberg, Arn M. J. M. ;
Heeren, Ron M. A. ;
McDonnell, Liam A. ;
Dijkstra, Jouke .
ANALYTICAL CHEMISTRY, 2014, 86 (18) :9204-9211
[3]   Imaging mass spectrometry of proteins and peptides: 3D volume reconstruction [J].
Andersson, Malin ;
Groseclose, M. Reid ;
Deutch, Ariel Y. ;
Caprioli, Richard M. .
NATURE METHODS, 2008, 5 (01) :101-108
[4]   FCM - THE FUZZY C-MEANS CLUSTERING-ALGORITHM [J].
BEZDEK, JC ;
EHRLICH, R ;
FULL, W .
COMPUTERS & GEOSCIENCES, 1984, 10 (2-3) :191-203
[5]  
Calligaris D, 2013, J MASS SPECTROM, V48, P1178, DOI 10.1002/jms.3295
[6]   Molecular imaging of biological samples: Localization of peptides and proteins using MALDI-TOF MS [J].
Caprioli, RM ;
Farmer, TB ;
Gile, J .
ANALYTICAL CHEMISTRY, 1997, 69 (23) :4751-4760
[7]   Imaging Mass Cytometry [J].
Chang, Qing ;
Ornatsky, Olga I. ;
Siddiqui, Iram ;
Loboda, Alexander ;
Baranov, Vladimir I. ;
Hedley, David W. .
CYTOMETRY PART A, 2017, 91A (02) :160-169
[8]  
Cheng CC, 2012, DIS MARKERS, V32, P21, DOI [10.1155/2012/386395, 10.3233/DMA-2012-0857]
[9]   Spatially resolved transcriptomics and beyond [J].
Crosetto, Nicola ;
Bienko, Magda ;
van Oudenaarden, Alexander .
NATURE REVIEWS GENETICS, 2015, 16 (01) :57-66
[10]   Two-Phase and Graph-Based Clustering Methods for Accurate and Efficient Segmentation of Large Mass Spectrometry Images [J].
Dexter, Alex ;
Race, Alan M. ;
Steven, Rory T. ;
Barnes, Jennifer R. ;
Hulme, Heather ;
Goodwin, Richard J. A. ;
Styles, Iain B. ;
Bunch, Josephine .
ANALYTICAL CHEMISTRY, 2017, 89 (21) :11293-11300