Calcium release domains in mammalian skeletal muscle studied with two-photon imaging and spot detection techniques

被引:20
作者
Gomez, Jose [1 ]
Neco, Patricia [1 ]
DiFranco, Marino [1 ]
Vergara, Julio L. [1 ]
机构
[1] Univ Calif Los Angeles, Dept Physiol, Sch Med, Los Angeles, CA 90095 USA
关键词
D O I
10.1085/jgp.200509475
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
The spatiotemporal characteristics of the Ca2+ release process in mouse skeletal muscle were investigated in enzymatically dissociated fibers from flexor digitorum brevis (FDB) muscles, using a custom-made two-photon microscope with laser scanning imaging (TPLSM) and spot detection capabilities. A two-microelectrode configuration was used to electrically stimulate the muscle fibers, to record action potentials (APs), and to control their myoplasmic composition. We used 125 mu M of the low-affinity Ca2+ indicator Oregon green 488 BAPTA-5N (OGB-5N), and 5 or 10 mM of the Ca2+ chelator EGTA (pCa 7) in order to arrest fiber contraction and to constrain changes in the [Ca2+] close to the release sites. Image and spot data showed that the resting distribution of OGB-5N fluorescence was homogeneous along the fiber, except for narrow peaks (similar to 23% above the bulk fluorescence) centered at the Z-lines, as evidenced by their nonoverlapping localization with respect to di-8-ANEPPS staining of the transverse tubules (T-tubules). Using spot detection, localized Ca2+ transients evoked by AP stimulation were recorded from adjacent longitudinal positions 100 nm apart. The largest and fastest Delta F/F transients were detected at sites flanking the Z-lines and colocalized with T-tubules; the smallest and slowest were detected at the M-line, whereas transients at the Z-line showed intermediate features. Three-dimensional reconstructions demonstrate the creation of two AP-evoked Ca2+ release domains per sarcomere, which flank the Z-line and colocalize with T-tubules. In the presence of 10 mM intracellular EGTA, these domains are formed in similar to 1.4 ms and dissipate within similar to 4 ms, after the peak of the AP. Their full-width at half-maximum (FWHM), measured at the time that Ca2+ transients peaked at T-tubule locations, was 0.62 mu m, similar to the 0.61 mu m measured for di-8-ANEPPS profiles. Both these values exceed the limit of resolution of the optical system, but their similarity suggests that at high [EGTA] the Ca2+ domains in adult mammalian muscle fibers are confined to Ca2+ release sites located at the junctional sarcoplasmic reticulum (SR).
引用
收藏
页码:623 / 637
页数:15
相关论文
共 53 条
[1]   Sarcoplasmic reticulum calcium release compared in slow-twitch and fast-twitch fibres of mouse muscle [J].
Baylor, SM ;
Hollingworth, S .
JOURNAL OF PHYSIOLOGY-LONDON, 2003, 551 (01) :125-138
[2]  
BERS DM, 1994, METHOD CELL BIOL, V40, P3
[3]   STRUCTURAL EVIDENCE FOR DIRECT INTERACTION BETWEEN THE MOLECULAR-COMPONENTS OF THE TRANSVERSE TUBULE SARCOPLASMIC-RETICULUM JUNCTION IN SKELETAL-MUSCLE [J].
BLOCK, BA ;
IMAGAWA, T ;
CAMPBELL, KP ;
FRANZINIARMSTRONG, C .
JOURNAL OF CELL BIOLOGY, 1988, 107 (06) :2587-2600
[4]   Two-photon tissue imaging: Seeing the immune system in a fresh light [J].
Cahalan, MD ;
Parker, I ;
Wei, SH ;
Miller, MJ .
NATURE REVIEWS IMMUNOLOGY, 2002, 2 (11) :872-880
[5]   MODEL OF CALCIUM MOVEMENTS DURING ACTIVATION IN THE SARCOMERE OF FROG SKELETAL-MUSCLE [J].
CANNELL, MB ;
ALLEN, DG .
BIOPHYSICAL JOURNAL, 1984, 45 (05) :913-925
[6]   Multiphoton excitation provides optical sections from deeper within scattering specimens than confocal imaging [J].
Centonze, VE ;
White, JG .
BIOPHYSICAL JOURNAL, 1998, 75 (04) :2015-2024
[7]   A small-molecule inhibitor of skeletal muscle myosin II [J].
Cheung, A ;
Dantzig, JA ;
Hollingworth, S ;
Baylor, SM ;
Goldman, YE ;
Mitchison, TJ ;
Straight, AF .
NATURE CELL BIOLOGY, 2002, 4 (01) :83-88
[8]   CALCIUM TRANSIENTS IN SINGLE MAMMALIAN SKELETAL-MUSCLE FIBERS [J].
DELBONO, O ;
STEFANI, E .
JOURNAL OF PHYSIOLOGY-LONDON, 1993, 463 :689-707
[9]   2-PHOTON LASER SCANNING FLUORESCENCE MICROSCOPY [J].
DENK, W ;
STRICKLER, JH ;
WEBB, WW .
SCIENCE, 1990, 248 (4951) :73-76
[10]   Optical imaging and functional characterization of the transverse tubular system of mammalian muscle fibers using the potentiometric indicator di-8-ANEPPS [J].
DiFranco, M ;
Capote, J ;
Vergara, JL .
JOURNAL OF MEMBRANE BIOLOGY, 2005, 208 (02) :141-153