Saving Colors and Max Coloring: Some Fixed-Parameter Tractability Results

被引:2
作者
Escoffier, Bruno [1 ]
机构
[1] UPMC Univ Paris 06, Sorbonne Univ, CNRS, UMR 7606 LIP6, 4 Pl Jussieu, F-75005 Paris, France
来源
GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, WG 2016 | 2016年 / 9941卷
关键词
COMPLEXITY; APPROXIMATION; GRAPHS; TIME;
D O I
10.1007/978-3-662-53536-3_5
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Max coloring is a well known generalization of the usual Min Coloring problem, widely studied from (standard) complexity and approximation viewpoints. Here, we tackle this problem under the framework of parameterized complexity. In particular, we first show to what extend the result of [3] - saving colors from the trivial bound of n on the chromatic number - extends to Max Coloring. Then we consider possible improvements of these results by considering the problem of saving colors/weight with respect to a better bound on the chromatic number. Finally, we consider the fixed parameterized tractability of Max Coloring in restricted graph classes under standard parameterization.
引用
收藏
页码:50 / 61
页数:12
相关论文
共 12 条
[1]   WEIGHTED COLORING IN TREES [J].
Araujo, Julio ;
Nisse, Nicolas ;
Perennes, Stephane .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2014, 28 (04) :2029-2041
[2]   Parameterized complexity of vertex colouring [J].
Cai, LZ .
DISCRETE APPLIED MATHEMATICS, 2003, 127 (03) :415-429
[3]  
Chor B, 2004, LECT NOTES COMPUT SC, V3353, P257
[4]   Weighted coloring on planar, bipartite and split graphs: Complexity and approximation [J].
de Werra, D. ;
Demange, M. ;
Escoffier, B. ;
Monnot, J. ;
Paschos, V. Th. .
DISCRETE APPLIED MATHEMATICS, 2009, 157 (04) :819-832
[5]   Time slot scheduling of compatible jobs [J].
Demange, M. ;
de Werra, D. ;
Monnot, J. ;
Paschos, V. Th. .
JOURNAL OF SCHEDULING, 2007, 10 (02) :111-127
[6]   Weighted Coloring: further complexity and approximability results [J].
Escoffier, B ;
Monnot, J ;
Paschos, VT .
INFORMATION PROCESSING LETTERS, 2006, 97 (03) :98-103
[7]  
Garey M. R., 1976, Theoretical Computer Science, V1, P237, DOI 10.1016/0304-3975(76)90059-1
[8]   A coloring problem for weighted graphs [J].
Guan, DJ ;
Zhu, XD .
INFORMATION PROCESSING LETTERS, 1997, 61 (02) :77-81
[9]   The maximum saving partition problem [J].
Hassin, R ;
Monnot, J .
OPERATIONS RESEARCH LETTERS, 2005, 33 (03) :242-248
[10]   Data reduction for graph coloring problems [J].
Jansen, Bart M. P. ;
Kratsch, Stefan .
INFORMATION AND COMPUTATION, 2013, 231 :70-88