Spatial dynamics in a predator-prey model with herd behavior

被引:134
作者
Yuan, Sanling [1 ]
Xu, Chaoqun [1 ]
Zhang, Tonghua [2 ]
机构
[1] Shanghai Univ Sci & Technol, Coll Sci, Shanghai 200093, Peoples R China
[2] Swinburne Univ Technol, FEIS, Hawthorn, Vic 3122, Australia
基金
中国国家自然科学基金;
关键词
MODIFIED LESLIE-GOWER; PATTERN-FORMATION; HOPF-BIFURCATION; SPATIOTEMPORAL PATTERNS; FUNCTIONAL-RESPONSES; QUALITATIVE-ANALYSIS; TURING PATTERNS; II SCHEMES; POPULATION; DIFFUSION;
D O I
10.1063/1.4812724
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a spatial predator-prey model with herd behavior in prey population and quadratic mortality in predator population is investigated. By the linear stability analysis, we obtain the condition for stationary pattern. Moreover, using standard multiple-scale analysis, we establish the amplitude equations for the excited modes, which determine the stability of amplitudes towards uniform and inhomogeneous perturbations. By numerical simulations, we find that the model exhibits complex pattern replication: spotted pattern, stripe pattern, and coexistence of the two. The results may enrich the pattern dynamics in predator-prey models and help us to better understand the dynamics of predator-prey interactions in a real environment. (C) 2013 AIP Publishing LLC.
引用
收藏
页数:10
相关论文
共 54 条
[1]   Modeling herd behavior in population systems [J].
Ajraldi, Valerio ;
Pittavino, Marta ;
Venturino, Ezio .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (04) :2319-2338
[2]   CRITICAL BEHAVIOR AND THRESHOLD OF COEXISTENCE OF A PREDATOR-PREY STOCHASTIC MODEL IN A 2D LATTICE [J].
Argolo, C. ;
Otaviano, H. ;
Gleria, Iram ;
Arashiro, Everaldo ;
Tome, Tania .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (02) :309-314
[3]   Competitive release and area effects [J].
Azevedo, F. ;
Kraenkel, R. A. ;
Pamplona da Silva, D. J. .
ECOLOGICAL COMPLEXITY, 2012, 11 :154-159
[4]   Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-type II schemes [J].
Aziz-Alaoui, MA ;
Okiye, MD .
APPLIED MATHEMATICS LETTERS, 2003, 16 (07) :1069-1075
[5]   Spatiotemporal patterns in nature [J].
Bascompte, J ;
Solé, RV .
TRENDS IN ECOLOGY & EVOLUTION, 1998, 13 (05) :173-174
[6]   Population cycles and spatial patterns in snowshoe hares: an individual-oriented simulation [J].
Bascompte, J ;
Sole, RV ;
Martinez, N .
JOURNAL OF THEORETICAL BIOLOGY, 1997, 187 (02) :213-222
[7]   Instabilities in spatially extended predator-prey systems: Spatio-temporal patterns in the neighborhood of Turing-Hopf bifurcations [J].
Baurmann, Martin ;
Gross, Thilo ;
Feudel, Ulrike .
JOURNAL OF THEORETICAL BIOLOGY, 2007, 245 (02) :220-229
[8]   MUTUAL INTERFERENCE BETWEEN PARASITES OR PREDATORS AND ITS EFFECT ON SEARCHING EFFICIENCY [J].
BEDDINGTON, JR .
JOURNAL OF ANIMAL ECOLOGY, 1975, 44 (01) :331-340
[9]   THE ORIGINS AND EVOLUTION OF PREDATOR PREY THEORY [J].
BERRYMAN, AA .
ECOLOGY, 1992, 73 (05) :1530-1535
[10]   Envelope Quasisolitons in Dissipative Systems with Cross-Diffusion [J].
Biktashev, V. N. ;
Tsyganov, M. A. .
PHYSICAL REVIEW LETTERS, 2011, 107 (13)