Adaptive RBF network control for uncertain system of dual arm robot

被引:0
作者
Luo, Shaohua [1 ]
机构
[1] Chongqing Aerosp Polytech Coll, Dept Mech Engn, Chongqing 400021, Peoples R China
来源
MECHANICAL ENGINEERING, MATERIALS AND ENERGY II | 2013年 / 281卷
关键词
Dual arm robot; Adaptive control; RBF network; uncertain systems; SLIDING-MODE CONTROL;
D O I
10.4028/www.scientific.net/AMM.281.37
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
In this paper, an adaptive RBF network controller is developed for a class of uncertain system of dual arm robot. RBF neural network is employed to estimate the unknown continuous functions. The tracking error is proved to be bounded and ultimately converges to an adequately compact set. The results indicate that the proposed controller has satisfying tracking performance.
引用
收藏
页码:37 / 40
页数:4
相关论文
共 3 条
[1]   Multilayer neural-net robot controller with guaranteed tracking performance [J].
Lewis, FL ;
Yesildirek, A ;
Liu, K .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1996, 7 (02) :388-399
[2]   A neural network-based sliding-mode control for rotating stall and surge in axial compressors [J].
Moghaddam, J. Javadi ;
Farahani, M. H. ;
Amanifard, N. .
APPLIED SOFT COMPUTING, 2011, 11 (01) :1036-1043
[3]   Load transportation by dual arm robot using sliding mode control [J].
Yagiz, Nurkan ;
Hacioglu, Yuksel ;
Arslan, Yunus Ziya .
JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2010, 24 (05) :1177-1184