Analytic Exact Upper Bound for the Lyapunov Dimension of the Shimizu-Morioka System

被引:9
|
作者
Leonov, Gennady A. [1 ]
Alexeeva, Tatyana A. [2 ]
Kuznetsov, Nikolay V. [1 ,3 ]
机构
[1] St Petersburg State Univ, Math & Mech Fac, St Petersburg 198504, Russia
[2] Natl Res Univ, Higher Sch Econ, St Petersburg 190008, Russia
[3] Univ Jyvaskyla, Dept Math Informat Technol, Jyvaskyla 40014, Finland
基金
俄罗斯科学基金会;
关键词
Lyapunov exponent; Lyapunov dimension; Shimizu-Morioka system; HAUSDORFF DIMENSION; HIDDEN OSCILLATIONS; ATTRACTORS; ALGORITHMS; INVARIANT; AIZERMAN; LORENZ; TIME;
D O I
10.3390/e17075101
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In applied investigations, the invariance of the Lyapunov dimension under a diffeomorphism is often used. However, in the case of irregular linearization, this fact was not strictly considered in the classical works. In the present work, the invariance of the Lyapunov dimension under diffeomorphism is demonstrated in the general case. This fact is used to obtain the analytic exact upper bound of the Lyapunov dimension of an attractor of the Shimizu-Morioka system.
引用
收藏
页码:5101 / 5116
页数:16
相关论文
共 19 条
  • [1] The Hopf bifurcation in the Shimizu-Morioka system
    Llibre, Jaume
    Pessoa, Claudio
    NONLINEAR DYNAMICS, 2015, 79 (03) : 2197 - 2205
  • [2] Integrability analysis of the Shimizu-Morioka system
    Huang, Kaiyin
    Shi, Shaoyun
    Li, Wenlei
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2020, 84
  • [3] The tricomi problem for the Shimizu-Morioka dynamical system
    G. A. Leonov
    Doklady Mathematics, 2012, 86 : 850 - 853
  • [4] The tricomi problem for the Shimizu-Morioka dynamical system
    Leonov, G. A.
    DOKLADY MATHEMATICS, 2012, 86 (03) : 850 - 853
  • [5] Dynamic characteristics analysis of the Shimizu-Morioka chaotic system
    Shi, Wenxin
    Jia, Hongyan
    PROCEEDINGS OF THE 2020 INTERNATIONAL CONFERENCE ON ARTIFICIAL LIFE AND ROBOTICS (ICAROB2020), 2020, : 813 - 816
  • [6] On hyperbolic attractors in a modified complex Shimizu-Morioka system
    Kruglov, Vyacheslav
    Sataev, Igor
    CHAOS, 2023, 33 (06)
  • [7] CONDITIONS FOR APPEARANCE AND DISAPPEARANCE OF LIMIT CYCLES IN THE SHIMIZU-MORIOKA SYSTEM
    Liu, Lingling
    Gao, Bo
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2011, 21 (09): : 2489 - 2503
  • [8] Computer assisted proof of the existence of the Lorenz attractor in the Shimizu-Morioka system
    Capinski, Maciej J.
    Turaev, Dmitry
    Zgliczynski, Piotr
    NONLINEARITY, 2018, 31 (12) : 5410 - 5440
  • [9] Stability, Synchronization Control and Numerical Solution of Fractional Shimizu-Morioka Dynamical System
    Akinlar, Mehmet Ali
    Secer, Aydin
    Bayram, Mustafa
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2014, 8 (04): : 1699 - 1705
  • [10] Anti-control of Hopf bifurcation in the Shimizu-Morioka system using an explicit criterion
    Yang, Yi
    Liao, Xiaofeng
    Dong, Tao
    NONLINEAR DYNAMICS, 2017, 89 (02) : 1453 - 1461