Reinforcement learning with analogue memristor arrays

被引:294
作者
Wang, Zhongrui [1 ]
Li, Can [1 ]
Song, Wenhao [1 ]
Rao, Mingyi [1 ]
Belkin, Daniel [1 ]
Li, Yunning [1 ]
Yan, Peng [1 ]
Jiang, Hao [1 ]
Lin, Peng [1 ]
Hu, Miao [2 ]
Strachan, John Paul [3 ]
Ge, Ning [3 ]
Barnell, Mark [4 ]
Wu, Qing [4 ]
Bartos, Andrew G. [5 ]
Qiu, Qinru [6 ]
Williams, R. Stanley [7 ]
Xia, Qiangfei [1 ]
Yang, J. Joshua [1 ]
机构
[1] Univ Massachusetts, Dept Elect & Comp Engn, Amherst, MA 01003 USA
[2] SUNY Binghamton, Binghamton, NY USA
[3] Hewlett Packard Enterprise, Hewlett Packard Labs, Palo Alto, CA USA
[4] Air Force Res Lab, Informat Directorate, Rome, NY USA
[5] Univ Massachusetts, Coll Informat & Comp Sci, Amherst, MA 01003 USA
[6] Syracuse Univ, Dept Elect Engn & Comp Sci, Syracuse, NY USA
[7] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX USA
基金
美国国家科学基金会;
关键词
DEVICE; SYNAPSE; MEMORY; PLASTICITY;
D O I
10.1038/s41928-019-0221-6
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Reinforcement learning algorithms that use deep neural networks are a promising approach for the development of machines that can acquire knowledge and solve problems without human input or supervision. At present, however, these algorithms are implemented in software running on relatively standard complementary metal-oxide-semiconductor digital platforms, where performance will be constrained by the limits of Moore's law and von Neumann architecture. Here, we report an experimental demonstration of reinforcement learning on a three-layer 1-transistor 1-memristor (1T1R) network using a modified learning algorithm tailored for our hybrid analogue-digital platform. To illustrate the capabilities of our approach in robust in situ training without the need for a model, we performed two classic control problems: the cart-pole and mountain car simulations. We also show that, compared with conventional digital systems in real-world reinforcement learning tasks, our hybrid analogue-digital computing system has the potential to achieve a significant boost in speed and energy efficiency.
引用
收藏
页码:115 / 124
页数:10
相关论文
共 50 条
[1]   Equivalent-accuracy accelerated neural-network training using analogue memory [J].
Ambrogio, Stefano ;
Narayanan, Pritish ;
Tsai, Hsinyu ;
Shelby, Robert M. ;
Boybat, Irem ;
di Nolfo, Carmelo ;
Sidler, Severin ;
Giordano, Massimo ;
Bodini, Martina ;
Farinha, Nathan C. P. ;
Killeen, Benjamin ;
Cheng, Christina ;
Jaoudi, Yassine ;
Burr, Geoffrey W. .
NATURE, 2018, 558 (7708) :60-+
[2]   Unsupervised Learning by Spike Timing Dependent Plasticity in Phase Change Memory (PCM) Synapses [J].
Ambrogio, Stefano ;
Ciocchini, Nicola ;
Laudato, Mario ;
Milo, Valerio ;
Pirovano, Agostino ;
Fantini, Paolo ;
Ielmini, Daniele .
FRONTIERS IN NEUROSCIENCE, 2016, 10
[3]   NEURONLIKE ADAPTIVE ELEMENTS THAT CAN SOLVE DIFFICULT LEARNING CONTROL-PROBLEMS [J].
BARTO, AG ;
SUTTON, RS ;
ANDERSON, CW .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1983, 13 (05) :834-846
[4]   Implementation of multilayer perceptron network with highly uniform passive memristive crossbar circuits [J].
Bayat, F. Merrikh ;
Prezioso, M. ;
Chakrabarti, B. ;
Nili, H. ;
Kataeva, I. ;
Strukov, D. .
NATURE COMMUNICATIONS, 2018, 9
[5]   Neuromorphic computing with multi-memristive synapses [J].
Boybat, Irem ;
Le Gallo, Manuel ;
Nandakumar, S. R. ;
Moraitis, Timoleon ;
Parnell, Thomas ;
Tuma, Tomas ;
Rajendran, Bipin ;
Leblebici, Yusuf ;
Sebastian, Abu ;
Eleftheriou, Evangelos .
NATURE COMMUNICATIONS, 2018, 9
[6]   Experimental Demonstration and Tolerancing of a Large-Scale Neural Network (165 000 Synapses) Using Phase-Change Memory as the Synaptic Weight Element [J].
Burr, Geoffrey W. ;
Shelby, Robert M. ;
Sidler, Severin ;
di Nolfo, Carmelo ;
Jang, Junwoo ;
Boybat, Irem ;
Shenoy, Rohit S. ;
Narayanan, Pritish ;
Virwani, Kumar ;
Giacometti, Emanuele U. ;
Kuerdi, Bulent N. ;
Hwang, Hyunsang .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2015, 62 (11) :3498-3507
[7]  
Chen WH, 2018, ISSCC DIG TECH PAP I, P494, DOI 10.1109/ISSCC.2018.8310400
[8]  
Chen YH, 2016, ISSCC DIG TECH PAP I, V59, P262, DOI 10.1109/ISSCC.2016.7418007
[9]   DaDianNao: A Machine-Learning Supercomputer [J].
Chen, Yunji ;
Luo, Tao ;
Liu, Shaoli ;
Zhang, Shijin ;
He, Liqiang ;
Wang, Jia ;
Li, Ling ;
Chen, Tianshi ;
Xu, Zhiwei ;
Sun, Ninghui ;
Temam, Olivier .
2014 47TH ANNUAL IEEE/ACM INTERNATIONAL SYMPOSIUM ON MICROARCHITECTURE (MICRO), 2014, :609-622
[10]   SiGe epitaxial memory for neuromorphic computing with reproducible high performance based on engineered dislocations [J].
Choi, Shinhyun ;
Tan, Scott H. ;
Li, Zefan ;
Kim, Yunjo ;
Choi, Chanyeol ;
Chen, Pai-Yu ;
Yeon, Hanwool ;
Yu, Shimeng ;
Kim, Jeehwan .
NATURE MATERIALS, 2018, 17 (04) :335-+