How Surface Orientation Affects Jumping-Droplet Condensation

被引:78
|
作者
Mukherjee, Ranit [1 ]
Berrier, Austin S. [1 ]
Murphy, Kevin R. [1 ]
Vieitez, Joshua R. [1 ]
Boreyko, Jonathan B. [1 ,2 ]
机构
[1] Virginia Tech, Dept Biomed Engn & Mech, Blacksburg, VA 24061 USA
[2] Virginia Tech, Dept Engn Mech, Blacksburg, VA 24061 USA
基金
美国食品与农业研究所;
关键词
DROPWISE CONDENSATION; HEAT-TRANSFER; DEWETTING TRANSITIONS; SUPERHYDROPHOBIC SURFACES; ENHANCED CONDENSATION; GROWTH; COALESCENCE; MODEL;
D O I
10.1016/j.joule.2019.03.004
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The out-of-plane jumping of coalescing droplets on superhydrophobic surfaces is capillary-inertial in nature; therefore, the effects of gravity or surface orientation are generally ignored. Here, we show that surface orientation actually has a profound effect on jumping-droplet condensation. For a horizontally oriented superhydrophobic surface, jumping droplets return to the surface and eventually become stuck. In contrast, vertical orientations can remove stuck droplets by gravitational shedding, which also serves to sweep away neighboring condensate. These differences affect the resulting droplet size distribution, which was captured using time-lapse photography and image analysis for 3 h of jumping-droplet condensation on horizontal, 45 degrees tilted, or vertically oriented surfaces. The maximum droplet size was an order of magnitude smaller for the inclined surfaces compared to the horizontal orientation, which would enhance the theoretical heat transfer coefficient by 40% for the 45 degrees tilt and by 100% for the vertical orientation.
引用
收藏
页码:1360 / 1376
页数:17
相关论文
共 50 条
  • [1] Biphilic jumping-droplet condensation
    Hoque, Muhammad Jahidul
    Chavan, Shreyas
    Lundy, Ross
    Li, Longnan
    Ma, Jingcheng
    Yan, Xiao
    Lei, Shenghui
    Miljkovic, Nenad
    Enright, Ryan
    CELL REPORTS PHYSICAL SCIENCE, 2022, 3 (04):
  • [2] Size distribution theory for jumping-droplet condensation
    Zhang, Lenan
    Xu, Zhenyuan
    Lu, Zhengmao
    Du, Jianyi
    Wang, Evelyn N.
    APPLIED PHYSICS LETTERS, 2019, 114 (16)
  • [3] External convective jumping-droplet condensation on a flat plate
    Birbarah, Patrick
    Miljkovic, Nenad
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2017, 107 : 74 - 88
  • [4] Internal convective jumping-droplet condensation in tubes
    Birbarah, Patrick
    Miljkovic, Nenad
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2017, 114 : 1025 - 1036
  • [5] Tuning Superhydrophobic Nanostructures To Enhance Jumping-Droplet Condensation
    Mulroe, Megan D.
    Srijanto, Bernadeta R.
    Ahmadi, S. Farzad
    Collier, C. Patrick
    Boreyko, Jonathan B.
    ACS NANO, 2017, 11 (08) : 8499 - 8510
  • [6] Deep Learning Enabled Comprehensive Evaluation of Jumping-Droplet Condensation and Frosting
    Chen, Li
    Shi, Diwei
    Kang, Xinyue
    Ma, Chen
    Zheng, Quanshui
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (19) : 25473 - 25482
  • [7] Enhanced Jumping-Droplet Departure
    Kim, Moon-Kyung
    Cha, Hyeongyun
    Birbarah, Patrick
    Chavan, Shreyas
    Zhong, Chen
    Xu, Yuehan
    Miljkovic, Nenad
    LANGMUIR, 2015, 31 (49) : 13452 - 13466
  • [8] A Comprehensive Model of Electric-Field-Enhanced Jumping-Droplet Condensation on Superhydrophobic Surfaces
    Birbarah, Patrick
    Li, Zhaoer
    Pauls, Alexander
    Miljkovic, Nenad
    LANGMUIR, 2015, 31 (28) : 7885 - 7896
  • [9] 'Sneezing' plants: pathogen transport via jumping-droplet condensation
    Nath, Saurabh
    Ahmadi, S. Farzad
    Gruszewski, Hope A.
    Budhiraja, Stuti
    Bisbano, Caitlin E.
    Jung, Sunghwan
    Schmale, David G., III
    Boreyko, Jonathan B.
    JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2019, 16 (155)
  • [10] Jumping-droplet electrostatic energy harvesting
    Miljkovic, Nenad
    Preston, Daniel J.
    Enright, Ryan
    Wang, Evelyn N.
    APPLIED PHYSICS LETTERS, 2014, 105 (01)