A concept for single-shot volumetric fluorescence imaging via orthogonally polarized excitation lattices

被引:2
作者
Strohl, Florian [1 ,2 ]
Kaminski, Clemens F. [1 ]
机构
[1] Univ Cambridge, Dept Chem Engn & Biotechnol, Cambridge CB3 0AS, England
[2] UiT Arctic Univ Norway, Dept Phys & Technol, N-9037 Tromso, Norway
基金
英国医学研究理事会; 英国工程与自然科学研究理事会; 英国惠康基金;
关键词
STRUCTURED ILLUMINATION MICROSCOPY; RESOLUTION; PHASE; LIGHT;
D O I
10.1038/s41598-019-42743-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The deconvolution of widefield fluorescence images provides only guesses of spatial frequency information along the optical axis due to the so called missing cone in the optical transfer function. Retaining the single-shot imaging speed of deconvolution microscopy while gaining access to missing cone information is thus highly desirable for microscopy of volumetric samples. Here, we present a concept that superimposes two orthogonally polarized excitation lattices with a phase-shift of p between them. In conjunction with a non-iterative image reconstruction algorithm this permits the restoration of missing cone information. We show how fluorescence anisotropy could be used as a method to encode and decode the patterns simultaneously and develop a rigorous theoretical framework for the method. Through in-silico experiments and imaging of fixed biological cells on a structured illumination microscope that emulates the proposed setup we validate the feasibility of the method.
引用
收藏
页数:9
相关论文
共 25 条
  • [1] Abrahamsson S, 2013, NAT METHODS, V10, P60, DOI [10.1038/NMETH.2277, 10.1038/nmeth.2277]
  • [2] Amos B, 2011, COMPREHENSIVE BIOPHYSICS, VOL 2: BIOPHYSICAL TECHNIQUES FOR CHARACTERIZATION OF CELLS, P3, DOI 10.1016/B978-0-12-374920-8.00203-4
  • [3] [Anonymous], 2012, Laser Cooling and Trapping
  • [4] HomoFRET Fluorescence Anisotropy Imaging as a Tool to Study Molecular Self-Assembly in Live Cells
    Chan, Fiona T. S.
    Kaminski, Clemens F.
    Schierle, Gabriele S. Kaminski
    [J]. CHEMPHYSCHEM, 2011, 12 (03) : 500 - 509
  • [5] Condat L, 2014, I S BIOMED IMAGING, P604, DOI 10.1109/ISBI.2014.6867943
  • [6] Combined multi-plane phase retrieval and super-resolution optical fluctuation imaging for 4D cell microscopy
    Descloux, A.
    Grussmayer, K. S.
    Bostan, E.
    Lukes, T.
    Bouwens, A.
    Sharipov, A.
    Geissbuehler, S.
    Mahul-Mellier, A. -L.
    Lashuel, H. A.
    Leutenegger, M.
    Lasser, T.
    [J]. NATURE PHOTONICS, 2018, 12 (03) : 165 - +
  • [7] φ2FLIM: a technique for alias-free frequency domain fluorescence lifetime imaging
    Elder, Alan D.
    Kaminski, Clemens F.
    Frank, Jonathan H.
    [J]. OPTICS EXPRESS, 2009, 17 (25): : 23181 - 23203
  • [8] Analyzing Receptor Assemblies in the Cell Membrane Using Fluorescence Anisotropy Imaging with TIRF Microscopy
    Erdelyi, Miklos
    Simon, Joseph
    Barnard, Eric A.
    Kaminski, Clemens F.
    [J]. PLOS ONE, 2014, 9 (06):
  • [9] Live-cell multiplane three-dimensional super-resolution optical fluctuation imaging
    Geissbuehler, Stefan
    Sharipov, Azat
    Godinat, Aurelien
    Bocchio, Noelia L.
    Sandoz, Patrick A.
    Huss, Anja
    Jensen, Nickels A.
    Jakobs, Stefan
    Enderlein, Joerg
    van der Goot, F. Gisou
    Dubikovskaya, Elena A.
    Lasser, Theo
    Leutenegger, Marcel
    [J]. NATURE COMMUNICATIONS, 2014, 5
  • [10] Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination
    Gustafsson, Mats G. L.
    Shao, Lin
    Carlton, Peter M.
    Wang, C. J. Rachel
    Golubovskaya, Inna N.
    Cande, W. Zacheus
    Agard, David A.
    Sedat, John W.
    [J]. BIOPHYSICAL JOURNAL, 2008, 94 (12) : 4957 - 4970