Transfection of aqueous CdS quantum dots using polyethylenimine

被引:18
作者
Li, Hui [1 ]
Shih, Wei-Heng [1 ]
Shih, Wan Y. [2 ]
Chen, Linyi [3 ]
Tseng, S-Ja [4 ,5 ]
Tang, Shiue-Cheng [4 ,5 ]
机构
[1] Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA
[2] Drexel Univ, Sch Biomed Engn Sci & Hlth Syst, Philadelphia, PA 19104 USA
[3] Natl Tsing Hua Univ, Coll Life Sci, Hsinchu 30013, Taiwan
[4] Natl Tsing Hua Univ, Dept Chem Engn, Hsinchu 30013, Taiwan
[5] Natl Tsing Hua Univ, Brain Res Ctr, Hsinchu 30013, Taiwan
关键词
D O I
10.1088/0957-4484/19/47/475101
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this study, we have examined the transfection of aqueous CdS quantum dots (QDs) in the cytoplasm of PC12 neuronal cells using polyethylenimine (PEI) as carrier. The CdS QDs were prepared using a unique aqueous synthesis method, at 5 nm in size and capped with 3-mercaptopropyltrimethoxysilane (MPS). They exhibited a quantum yield of 7.5% and a zeta potential of -25 mV. With PEI they formed complexes by electrostatic attraction. At PEI/QD number ratios of > 100, the PEI-QD complexes obtained exhibited a saturated size of about 24 nm and a zeta potential of about 15 mV. Confocal microscopy showed that PEI-QD complexes of a PEI/QD number ratio of 200 were successfully internalized and uniformly distributed inside the cells, indicating that the PEI-QD complexes were able to rupture the vesicles to enter the cytoplasm without aggregation. In addition, we showed that the presence of the PEI did not reduce the photoluminescence of the QDs and only mildly reduced the mitochondrial activity of the transfected cells-with no apparent reduction at a PEI/QD ratio of < 40 to about 30% reduction at a PEI/QD number ratio of 200.
引用
收藏
页数:8
相关论文
共 32 条
[1]   Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis [J].
Akinc, A ;
Thomas, M ;
Klibanov, AM ;
Langer, R .
JOURNAL OF GENE MEDICINE, 2005, 7 (05) :657-663
[2]   Colloidal quantum dots. From scaling laws to biological applications [J].
Alivisatos, P .
PURE AND APPLIED CHEMISTRY, 2000, 72 (1-2) :3-9
[3]   Quantum dot-insect neuropeptide conjugates for fluorescence imaging, transfection, and nucleus targeting of living cells [J].
Biju, Vasudevanpillai ;
Muraleedharan, Damodaran ;
Nakayama, Ken-ichi ;
Shinohara, Yasuo ;
Itoh, Tamitake ;
Baba, Yoshinobu ;
Ishikawa, Mitsuru .
LANGMUIR, 2007, 23 (20) :10254-10261
[4]   A VERSATILE VECTOR FOR GENE AND OLIGONUCLEOTIDE TRANSFER INTO CELLS IN CULTURE AND IN-VIVO - POLYETHYLENIMINE [J].
BOUSSIF, O ;
LEZOUALCH, F ;
ZANTA, MA ;
MERGNY, MD ;
SCHERMAN, D ;
DEMENEIX, B ;
BEHR, JP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (16) :7297-7301
[5]   Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects [J].
Cai, WB ;
Shin, DW ;
Chen, K ;
Gheysens, O ;
Cao, QZ ;
Wang, SX ;
Gambhir, SS ;
Chen, XY .
NANO LETTERS, 2006, 6 (04) :669-676
[6]   Luminescent quantum dots for multiplexed biological detection and imaging [J].
Chan, WCW ;
Maxwell, DJ ;
Gao, XH ;
Bailey, RE ;
Han, MY ;
Nie, SM .
CURRENT OPINION IN BIOTECHNOLOGY, 2002, 13 (01) :40-46
[7]   Time-gated biological imaging by use of colloidal quantum dots [J].
Dahan, M ;
Laurence, T ;
Pinaud, F ;
Chemla, DS ;
Alivisatos, AP ;
Sauer, M ;
Weiss, S .
OPTICS LETTERS, 2001, 26 (11) :825-827
[8]   Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking [J].
Dahan, M ;
Lévi, S ;
Luccardini, C ;
Rostaing, P ;
Riveau, B ;
Triller, A .
SCIENCE, 2003, 302 (5644) :442-445
[9]   Intracellular delivery of quantum dots for live cell labeling and organelle tracking [J].
Derfus, AM ;
Chan, WCW ;
Bhatia, SN .
ADVANCED MATERIALS, 2004, 16 (12) :961-+
[10]   Cell-penetrating quantum dots based on multivalent and endosome-disrupting surface coatings [J].
Duan, Hongwei ;
Nie, Shuming .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (11) :3333-3338