We prove pointwise convergence, as N -> infinity, for the multiple ergodic averages (1/N) Sigma(N)(n=1) f(T(n)x) . g(S(an)x), where T and S are commuting measure preserving transformations, and a(n) is a random version of the sequence [n(c)] for some appropriate c > 1. We also prove similar mean convergence results for averages of the form (1/N) Sigma(N)(n=1) f(T(an)x) . g(S(an)x), as well as pointwise results when T and S are powers of the same transformations. The deterministic versions of these results, where one replaces a(n) with [n(c)], remain open, and we hope that our method will indicate a fruitful way to approach these problems as well.
机构:
Univ Littoral Cote dOpale, Lab Math Pures & Appl Joseph Liouville, Calais F-62100, FranceUniv Littoral Cote dOpale, Lab Math Pures & Appl Joseph Liouville, Calais F-62100, France
Darwiche, Ahmad
Schneider, Dominique
论文数: 0引用数: 0
h-index: 0
机构:
Univ Littoral Cote dOpale, Lab Math Pures & Appl Joseph Liouville, Calais F-62100, FranceUniv Littoral Cote dOpale, Lab Math Pures & Appl Joseph Liouville, Calais F-62100, France
机构:
Univ Littoral Cote dOpale, Lab Math Pures & Appl Joseph Liouville, Calais F-62100, FranceUniv Littoral Cote dOpale, Lab Math Pures & Appl Joseph Liouville, Calais F-62100, France
Darwiche, Ahmad
Schneider, Dominique
论文数: 0引用数: 0
h-index: 0
机构:
Univ Littoral Cote dOpale, Lab Math Pures & Appl Joseph Liouville, Calais F-62100, FranceUniv Littoral Cote dOpale, Lab Math Pures & Appl Joseph Liouville, Calais F-62100, France