Random Sequences and Pointwise Convergence of Multiple Ergodic Averages

被引:18
作者
Frantzikinakis, N. [1 ]
Lesigne, E. [2 ]
Wierdl, M. [3 ]
机构
[1] Univ Crete, Dept Math, Iraklion 71409, Greece
[2] Univ Tours, Federat Rech Denis Poisson, Lab Math & Phys Theor, UMR CNRS 6083, F-37200 Tours, France
[3] Univ Memphis, Dept Math, Memphis, TN 38152 USA
基金
美国国家科学基金会;
关键词
ergodic averages; mean convergence; pointwise convergence; multiple recurrence; random sequences; commuting transformations; COMMUTING TRANSFORMATIONS; DIAGONAL MEASURES; THEOREMS; RECURRENCE; INTEGERS; SYSTEMS; GROWTH;
D O I
10.1512/iumj.2012.61.4571
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove pointwise convergence, as N -> infinity, for the multiple ergodic averages (1/N) Sigma(N)(n=1) f(T(n)x) . g(S(an)x), where T and S are commuting measure preserving transformations, and a(n) is a random version of the sequence [n(c)] for some appropriate c > 1. We also prove similar mean convergence results for averages of the form (1/N) Sigma(N)(n=1) f(T(an)x) . g(S(an)x), as well as pointwise results when T and S are powers of the same transformations. The deterministic versions of these results, where one replaces a(n) with [n(c)], remain open, and we hope that our method will indicate a fruitful way to approach these problems as well.
引用
收藏
页码:585 / 617
页数:33
相关论文
共 29 条
[1]  
[Anonymous], CAMBRIDGE STUDIES AD
[2]  
ASSANI I., 2005, C MATH, V102, P245
[3]   JOINT ERGODICITY AND MIXING [J].
BEREND, D .
JOURNAL D ANALYSE MATHEMATIQUE, 1985, 45 :255-284
[4]   MULTIPLE ERGODIC-THEOREMS [J].
BEREND, D .
JOURNAL D ANALYSE MATHEMATIQUE, 1988, 50 :123-142
[5]   A nilpotent Roth theorem [J].
Bergelson, V ;
Leibman, A .
INVENTIONES MATHEMATICAE, 2002, 147 (02) :429-470
[6]   Ergodic averaging sequences [J].
Boshernitzan, M ;
Kolesnik, G ;
Quas, A ;
Wierdl, M .
JOURNAL D ANALYSE MATHEMATIQUE, 2005, 95 (1) :63-103
[7]   HOMOGENEOUSLY DISTRIBUTED SEQUENCES AND POINCARE SEQUENCES OF INTEGERS OF SUBLACUNARY GROWTH [J].
BOSHERNITZAN, M .
MONATSHEFTE FUR MATHEMATIK, 1983, 96 (03) :173-181
[8]  
BOURGAIN J, 1990, J REINE ANGEW MATH, V404, P140
[9]   ON THE MAXIMAL ERGODIC THEOREM FOR CERTAIN SUBSETS OF THE INTEGERS [J].
BOURGAIN, J .
ISRAEL JOURNAL OF MATHEMATICS, 1988, 61 (01) :39-72
[10]   Multiple recurrence for two commuting transformations [J].
Chu, Qing .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2011, 31 :771-792