Dynamic Mode Decomposition via Dictionary Learning for Foreground Modeling in Videos

被引:0
作者
Ul Haq, Israr [1 ]
Fujii, Keisuke [1 ,2 ]
Kawahara, Yoshinobu [1 ,3 ]
机构
[1] RIKEN, Ctr Adv Intelligence Project, Wako, Saitama, Japan
[2] Nagoya Univ, Grad Sch Informat, Nagoya, Aichi, Japan
[3] Kyushu Univ, Inst Math Ind, Fukuoka, Japan
来源
PROCEEDINGS OF THE 15TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS, VOL 5: VISAPP | 2020年
关键词
Dynamic Mode Decomposition; Nonlinear Dynamical System; Dictionary Learning; Object Extraction; Background Modeling; Foreground Modeling;
D O I
10.5220/0009144604760483
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Accurate extraction of foregrounds in videos is one of the challenging problems in computer vision. In this study, we propose dynamic mode decomposition via dictionary learning (dl-DMD), which is applied to extract moving objects by separating the sequence of video frames into foreground and background information with a dictionary learned using block patches on the video frames. Dynamic mode decomposition (DMD) decomposes spatiotemporal data into spatial modes, each of whose temporal behavior is characterized by a single frequency and growth/decay rate and is applicable to split a video into foregrounds and the background when applying it to a video. And, in dl-DMD, DMD is applied on coefficient matrices estimated over a learned dictionary, which enables accurate estimation of dynamical information in videos. Due to this scheme, dlDMD can analyze the dynamics of respective regions in a video based on estimated amplitudes and temporal evolution over patches. The results on synthetic data exhibit that dl-DMD outperforms the standard DMD and compressed DMD (cDMD) based methods. Also, the results of an empirical performance evaluation in the case of foreground extraction from videos using publicly available dataset demonstrates the effectiveness of the proposed dl-DMD algorithm and achieves a performance that is comparable to that of the state-of-the-art techniques in foreground extraction tasks.
引用
收藏
页码:476 / 483
页数:8
相关论文
共 50 条
  • [41] Low order modeling of dynamic stall using vortex particle method and dynamic mode decomposition
    Nguyen, Van Duc
    Duong, Viet Dung
    Trinh, Minh Hoang
    Nguyen, Hoang Quan
    Nguyen, Dang Thai Son
    INTERNATIONAL JOURNAL OF MICRO AIR VEHICLES, 2023, 15
  • [42] Multiresolution Dynamic Mode Decomposition
    Kutz, J. Nathan
    Fu, Xing
    Brunton, Steven L.
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2016, 15 (02): : 713 - 735
  • [43] Singular Dynamic Mode Decomposition
    Rosenfeld, Joel A.
    Kamalapurkar, Rushikesh
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2023, 22 (03) : 2357 - 2381
  • [44] A characteristic dynamic mode decomposition
    Sesterhenn, Joern
    Shahirpour, Amir
    THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS, 2019, 33 (3-4) : 281 - 305
  • [45] Applications of the dynamic mode decomposition
    P. J. Schmid
    L. Li
    M. P. Juniper
    O. Pust
    Theoretical and Computational Fluid Dynamics, 2011, 25 : 249 - 259
  • [46] Consistent Dynamic Mode Decomposition
    Azencot, Omri
    Yin, Wotao
    Bertozzi, Andrea
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2019, 18 (03) : 1565 - 1585
  • [47] Applications of the dynamic mode decomposition
    Schmid, P. J.
    Li, L.
    Juniper, M. P.
    Pust, O.
    THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS, 2011, 25 (1-4) : 249 - 259
  • [48] Randomized Dynamic Mode Decomposition
    Erichson, N. Benjamin
    Mathelin, Ionel
    Kutz, J. Nathan
    Brunton, Steven L.
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2019, 18 (04): : 1867 - 1891
  • [49] Constrained Dynamic Mode Decomposition
    Krake T.
    Klotzl D.
    Eberhardt B.
    Weiskopf D.
    IEEE Trans Visual Comput Graphics, 2023, 1 (182-192): : 182 - 192
  • [50] Dynamic Mode Decomposition with Control
    Proctor, Joshua L.
    Brunton, Steven L.
    Kutz, J. Nathan
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2016, 15 (01): : 142 - 161