On Schrodinger Oscillatory Integrals Associated with the Dunkl Transform

被引:2
作者
Li, Zhongkai [1 ]
Zhang, Xiaoliang [2 ]
机构
[1] Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
[2] Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen 518060, Peoples R China
基金
中国国家自然科学基金;
关键词
Schrodinger oscillatory integral; Sobolev space; Dunkl transform; Dunkl operator; Hausdorff dimension; RADIAL FUNCTIONS; BILINEAR APPROACH; DIVERGENCE SETS; SINGULAR SETS; CONVERGENCE; REGULARITY;
D O I
10.1007/s00041-018-9597-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the paper we study the Schrodinger oscillatory integrals T,atf(x) (0, a>1) associated with the one-dimensional Dunkl transform F. If a=2, the function u(x,t):=T,2tf(x) solves the free Schrodinger equation associated to the Dunkl operator, with f as the initial data. It is proved that, if f is in the Sobolev spaces Hs(R) associated with the Dunkl transform, with the exponents s not less than 1/4, then T,atf converges almost everywhere to f as t0. A counterexample is constructed to show that 1/4 can not be improved for a=2, and when 1/4s1/2, the Hausdorff dimension of the divergence set of T,atf for fHs(R) is proved to be 1-2s at most.
引用
收藏
页码:267 / 298
页数:32
相关论文
共 31 条
  • [1] On the dimension of divergence sets of dispersive equations
    Antonio Barcelo, Juan
    Bennett, Jonathan
    Carbery, Anthony
    Rogers, Keith M.
    [J]. MATHEMATISCHE ANNALEN, 2011, 349 (03) : 599 - 622
  • [2] Bennett J, 2012, INDIANA U MATH J, V61, P1
  • [3] A note on the Schrodinger maximal function
    Bourgain, J.
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 2016, 130 : 393 - 396
  • [4] On the Schrodinger Maximal Function in Higher Dimension
    Bourgain, J.
    [J]. PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2013, 280 (01) : 46 - 60
  • [5] THE INFLUENCE OF VARIABLES IN PRODUCT-SPACES
    BOURGAIN, J
    KAHN, J
    KALAI, G
    KATZNELSON, Y
    LINIAL, N
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 1992, 77 (1-2) : 55 - 64
  • [6] Bourgain J., 1995, Princeton Math. Ser., V42, P83
  • [7] Carleson L., 1979, Lecture notes in mathematics, V779, P5
  • [8] Dahlberg B., 2006, Harmonic Anal, V908, P205, DOI DOI 10.1007/BFB0093289
  • [9] Demeter C., 1608, ARXIV160807640V1
  • [10] Du X., ARXIV161208946V2