Strong converse for identification via quantum channels

被引:235
作者
Ahlswede, R
Winter, A
机构
[1] Univ Bielefeld, Fak Math, D-33501 Bielefeld, Germany
[2] Univ Bristol, Dept Comp Sci, Bristol BS8 1UB, Avon, England
关键词
covering hypergraphs; identification; large deviations; quantum channels;
D O I
10.1109/18.985947
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we present a simple proof of the strong converse for identification via discrete memoryless quantum channels, based on a novel covering lemma. The new method is a generalization to quantum communication channels of Ahlswede's recently discovered approach to classical channels. It involves a development of explicit large deviation estimates to the case of random variables taking values in self-adjoint operators on a Hilbert space. This theory is presented separately in an appendix, and we illustrate it by showing its application to quantum generalizations of classical hypergraph covering problems.
引用
收藏
页码:569 / 579
页数:11
相关论文
共 28 条
  • [1] IDENTIFICATION VIA CHANNELS
    AHLSWEDE, R
    DUECK, G
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1989, 35 (01) : 15 - 29
  • [2] AHLSWEDE R., 1979, J COMBINATORICS INFO, V4, P76
  • [3] AHLSWEDE R, 1992, SET COVERINGS CARTES
  • [4] AHLSWEDE R, UNPUB IEEE T INFORM
  • [5] [Anonymous], 1963, PROBABILITIES ALGEBR
  • [6] Bratteli O., 1979, Operator algebras and quantum statistical mechanics I, C*- and W*-algebras, symmetry groups, decomposition of states, VI
  • [7] CSISZAR I, 1981, INFORMATION THEORY C
  • [8] Davies E.B., 1976, Quantum Theory of Open Systems
  • [9] Donoghue W. F., 1974, Die Grundlehren der mathematischen Wissenschaften, V207
  • [10] GOLDEN S, 1965, PHYS REV, V137, P1127